Security intrusions as mechanisms

The practice of security often revolves around figuring out what (malicious act) happened to a system. This historical inquiry is the focus of forensics, specifically when the inquiry regards a policy violation (such as a law). The results of forensic investigation might be used to fix the impacted system, attribute the attack to adversaries, or build more resilient systems going forwards. However, to execute any of these purposes, the investigator first must discover the mechanism of the intrusion.

As discussed at an ACE seminar last October, one common framework for this discovery task is the intrusion kill chain. Mechanisms, mechanistic explanation, and mechanism discovery have highly-developed meanings in the biological and social sciences, but the word is not often used in information security. In a recent paper, we argue that incident response and forensics investigators would be well-served to make use of the existing literature on mechanisms, as thinking about intrusion kill chains as mechanisms is a productive and useful way to frame the work.

To some extent, thinking mechanistically is a description of what (certain) scientists do. But the mechanisms literature within philosophy of science is not merely descriptive. The normative benefits extolled include that thinking mechanistically is an effective heuristic for searching out useful explanations; mechanisms provide the most coherent unity to complex fields of study; and that mechanistic explanation is necessary to guide selection among potential studies given limited experimental resources, experiment design decisions, and interpretation of statistical results. I previously argued that capricious use of biological metaphors is bad for information security. We are keenly aware that these benefits of mechanistic explanation need to apply to security as and for security, not merely because they work in other sciences.

Our paper demonstrates how we can cast the intrusion kill chain, the diamond model, and other models of security intrusions as mechanistic models. This casting begins to demonstrate the mosaic unity of information security. Campaigns are made up of attacks. Attacks, as modeled by the kill chain, have multiple steps. In a specific attack, the delivery step might be accomplished by a drive-by-download. So we demonstrate how drive-by-downloads are a mechanism, one among many possible delivery mechanisms. This description is a schema to be filled in during a particular drive-by download incident with a specific URL and specific javascript, etc. The mechanistic schema of the delivery mechanism informs the investigator because it indicates what types of network addresses to look for, and how to fit them into the explanation quickly. This process is what Lindley Darden calls schema instantiation in the mechanism discovery literature.

Our argument is not that good forensics investigators do not do such mechanism discovery strategies. Rather, it is precisely that good investigators do do them. But we need to describe what it is good investigators in fact do. We do not currently, and that lack makes teaching new investigators particularly difficult. Thinking about intrusions as mechanisms unlocks an expansive literature on good ways to do mechanism discovery. This literature will make it easier to codify what good investigators do, which among other benefits allows us to better teach sound methodological practices to incoming investigators.

Our paper on this topic was published in the open-access Journal of Cybersecurity, as Thinking about intrusion kill chains as mechanisms, by Jonathan M. Spring and Eric Hatleback.

Just how sophisticated will card fraud techniques become?

In late 2009, my colleagues and I discovered a serious vulnerability in EMV, the most widely used standard for smart card payments, known as “Chip and PIN” in the UK. We showed that it was possible for criminals to use a stolen credit or debit card without knowing the PIN, by tricking the terminal into thinking that any PIN is correct. We gave the banking industry advance notice of our discovery in early December 2009, to give them time to fix the problem before we published our research. After this period expired (two months, in this case) we published our paper as well explaining our results to the public on BBC Newsnight. We demonstrated that this vulnerability was real using a proof-of-concept system built from equipment we had available (off-the shelf laptop and card reader, FPGA development board, and hand-made card emulator).

No-PIN vulnerability demonstration

After the programme aired, the response from the banking industry dismissed the possibility that the vulnerability would be successfully exploited by criminals. The banking trade body, the UK Cards Association, said:

“We believe that this complicated method will never present a real threat to our customers’ cards. … Neither the banking industry nor the police have any evidence of criminals having the capability to deploy such sophisticated attacks.”

Similarly, EMVCo, who develop the EMV standards said:

“It is EMVCo’s view that when the full payment process is taken into account, suitable countermeasures to the attack described in the recent Cambridge Report are already available.”

It was therefore interesting to see that in May 2011, criminals were caught having stolen cards in France then exploiting a variant of this vulnerability to buy over €500,000 worth of goods in Belgium (which were then re-sold). At the time, not many details were available, but it seemed that the techniques the criminals used were much more sophisticated than our proof-of-concept demonstration.

We now know more about what actually happened, as well as the banks’ response, thanks to a paper by the researchers who performed the forensic analysis that formed part of the criminal investigation of this case. It shows just how sophisticated criminals could be, given sufficient motivation, contrary to the expectations in the original banking industry response.

Continue reading Just how sophisticated will card fraud techniques become?

Gianluca Stringhini – Cyber criminal operations and developing systems to defend against them

Gianluca Stringhini’s research focuses on studying cyber criminal operations and developing systems to defend against them.

Such operations tend to follow a common pattern. First the criminal operator lures a user into going to a Web site and tries to infect them with malware. Once infected, the user is joined to a botnet. From there, the user’s computer is instructed to perform malicious activities on the criminal’s behalf. Stringhini, whose UCL appointment is shared between the Department of Computer Science and the Department of Security and Crime Science, has studied all three of these stages.

Stringhini, who is from Genoa, developed his interest in computer security at college: “I was doing the things that all college students are doing, hacking, and breaking into systems. I was always interested in understanding how computers work and how one could break them. I started playing in hacking competitions.”

At the beginning, these competitions were just for fun, but those efforts became more serious when he arrived in 2008 at UC Santa Barbara, which featured one of the world’s best hacking teams, a perennial top finisher in Defcon’s Capture the Flag competition. It was at Santa Barbara that his interest in cyber crime developed, particularly in botnets and the complexity and skill of the operations that created them. He picked the US after Christopher Kruegel, whom he knew by email, invited him to Santa Barbara for an internship. He liked it, so he stayed and did a PhD studying the way criminals use online services such as social networks

“Basically, the idea is that if you have an account that’s used by a cyber criminal it will be used differently than one used by a real person because they will have a different goal,” he says. “And so you can develop systems that learn about these differences and detect accounts that are misused.” Even if the attacker tries to make their behaviour closely resemble the user’s own, ultimately spreading malicious content isn’t something normal users intend to do, and the difference is detectable.

This idea and Stringhini’s resulting PhD research led to his most significant papers to date.

Continue reading Gianluca Stringhini – Cyber criminal operations and developing systems to defend against them

What are the social costs of contactless fraud?

Contactless payments are in the news again: in the UK the spending limit has been increased from £20 to £30 per transaction, and in Australia the Victoria Police has argued that contactless payments are to blame for an extra 100 cases of credit card fraud per week. These frauds are where multiple transactions are put through, keeping each under the AUS $100 (about £45) limit. UK news coverage has instead focussed on the potential for cross-channel fraud: where card details are skimmed from contactless cards then used for fraudulent online purchases. In a demonstration, Which? skimmed volunteers cards at a distance then bought a £3,000 TV with the card numbers and expiry dates recorded.

The media have been presenting contactless payments are insecure; the response from the banking industry is to point out that customers are not liable for the fraudulent transactions. Both are in some ways correct, but in other ways are missing the point.

The law in the UK (Payment Services Regulations (PSR) 2009, Regulation 62) indeed does say that the customers are entitled to a refund for fraudulent transactions. However a bank will only do this if they are convinced the customer has not authorised the transaction, and was not negligent. In my experience, a customer who is unable to clearly, concisely and confidently explain why they are entitled to a refund runs a high risk of not getting one. This fact will disproportionately disadvantage the more vulnerable members of society.

Continue reading What are the social costs of contactless fraud?

Teaching cybersecurity to criminologists

I recently had the pleasure of teaching my first module at UCL, an introduction to cybersecurity for students in the SECReT doctoral training centre.

The module had been taught before, but always from a fairly computer-science-heavy perspective. Given that the students had largely no background in computer science, and that my joint appointment in the Department of Security and Crime Science has given me at least some small insight into what aspects of cybersecurity criminologists might find interesting, I chose to design the lecture material largely from scratch. I tried to balance the technical components of cybersecurity that I felt everyone needed to know (which, perhaps unsurprisingly, included a fair amount of cryptography) with high-level design principles and the overarching question of how we define security. Although I say I designed the curriculum from scratch, I of course ended up borrowing heavily from others, most notably from the lecture and exam material of my former supervisor’s undergraduate cybersecurity module (thanks, Stefan!) and from George’s lecture material for Introduction to Computer Security. If anyone’s curious, the lecture material is available on my website.

As I said, the students in the Crime Science department (and in particular the ones taking this module) had little to no background in computer science.  Instead, they had a diverse set of academic backgrounds: psychology, political science, forensics, etc. One of the students’ proposed dissertation titles was “Using gold nanoparticles on metal oxide semiconducting gas sensors to increase sensitivity when detecting illicit materials, such as explosives,” so it’s an understatement to say that we were approaching cybersecurity from different directions!

With that in mind, one of the first things I did in my first lecture was to take a poll on who was familiar with certain concepts (e.g., SSH, malware, the structure of the Internet), and what people were interested in learning about (e.g., digital forensics, cryptanalysis, anonymity). I don’t know what I was expecting, but the responses really blew me away! The students overwhelmingly wanted to hear about how to secure themselves on the Internet, both in terms of personal security habits (e.g., using browser extensions) and in terms of understanding what and how things might go wrong. Almost the whole class specifically requested Tor, and a few had even used it before.

This theme of being (pleasantly!) surprised continued throughout the term.  When I taught certificates, the students asked not for more details on how they work, but if there was a body responsible for governing certificate authorities and if it was possible to sue them if they misbehave. When I taught authentication, we played a Scattergories-style game to weigh the pros and cons of various authentication mechanisms, and they came up with answers like “a con of backup security questions is that they reveal cultural trends that may then be used to reveal age, ethnicity, gender, etc.”

There’s still a month and a half left until the students take the exam, so it’s too soon to say how effective it was at teaching them cybersecurity, but for me the experience was a clear success and one that I look forward to repeating and refining in the future.