Diversity is our strength

On Friday evening, US President Donald Trump signed an executive order suspending visas to citizens of seven countries for at least 90 days. Among the many other implications of this ban — none of which we want to minimise with our focus on the implications for academics — this now implies that (1) students who are citizens (even dual citizens) of these countries are now unable to study in the US or attend conferences there, and (2) academics who are citizens of these countries and who legally work and live in the US are now unable to leave (to, say, attend conferences or visit another academic institution), as they would not be allowed back in.

We receive many inquiries each year from strong applicants from these seven countries, and according to a statement issued by many US-based academics, more than 3,000 Iranian students received PhDs from American universities in the past 3 years. Across our nine faculty members, we currently have funding available for numerous PhD students and postdoctoral researchers. If any student is stranded outside of the US, we of course hope that they are able to make it back quickly, but have funding for internships that would allow them to work from here in the interim. In organising conferences, we and our wider UCL colleagues are doing all we can to organise them in places without such bans in place, and where that is not possible to enable remote participation.

Most of all, as a group that prides itself on the quality and openness of its research and on its international reach, we would like to re-affirm our commitment to working with the best possible students and academics, regardless of their religion or their country of origin (or indeed anything aside from their scientific contributions). To quote a statement from the International Association of Cryptologic Research (IACR), “the open exchange of ideas requires freedom of movement.” To address the full effects of this ban we of course need far more international cooperation, but we hope that even our small actions can help mitigate the damage that has already been done to our friends and colleagues, both within and outside of the US, and that promises to continue to be done in the future.

Nicolas Courtois
Emiliano de Cristofaro
George Danezis
Jens Groth
Sarah Meiklejohn
Steven Murdoch
David Pym
Angela Sasse
Gianluca Stringhini

On the security and privacy of the ultrasound tracking ecosystem

In April 2016, the US Federal Trade Commission (FTC) sent warning letters to 12 Google Play app developers. The letters were addressed to those who incorporated the SilverPush framework in their apps, and reminded developers who used tracking software to explicitly inform their users (as seen in Section 5 of the Federal Trade Commission Act). The incident was covered by popular press and privacy concerns were raised. Shortly after, SilverPush claimed no active partnerships in the US and the buzz subsided.

Unfortunately, as the incident was resolved relatively fast, very few technical details of the technology were made public. To fill in this gap and understand the potential security implications, we conducted an in-depth study of the SilverPush framework and all the associated technologies.

The development of the framework was motivated by a fast-increasing interest of the marketing industry in products performing high-accuracy user tracking, and their derivative monetization schemes. This resulted in a high demand for cross-device tracking techniques with increased accuracy and reduced prerequisites.

The SilverPush framework fulfilled both of these requirements, as it provided a novel way to track users between their devices (e.g., TV, smartphone), without any user actions (e.g., login to a single platform from all their devices). To achieve that, the framework realized a previously unseen cross-device tracking technique (i.e., ultrasound cross-device tracking, uXDT) that offered high tracking accuracy, and came with various desirable features (e.g., easy to deploy, imperceptible by users). What differentiated that framework from existing ones was the use of high-frequency, inaudible ultrasonic beacons (uBeacons) as a medium/channel for identifier transmission between the user’s devices. This is also offered a major advantage to uXDT, against other competing technologies, as uBeacons can be emitted by most commercial speakers and captured by most commercial microphones. This eliminates the need for specialized emission and/or capturing equipment.

Aspects of a little-known ecosystem

The low deployment cost of the technology fueled the growth of a whole ecosystem of frameworks and applications that use uBeacons for various purposes, such as proximity marketing, audience analytics, and device pairing. The ecosystem is built around the near-ultrasonic transmission channel, and enables marketers to profile users.

Unfortunately, users are often given limited information on the ecosystem’s inner workings. This lack of transparency has been the target of great criticism from the users, the security community and the regulators. Moreover, our security analysis revealed a false assumption in the uBeacon threat model that can be exploited by state-level adversaries to launch complex attacks, including one that de-anonymizes the users of anonymity networks (e.g., Tor).

On top of these, a more fundamental shortcoming of the ecosystem is the violation of the least privilege principle, as a consequence of the access to the device’s microphone. More specifically, any app that wants to employ ultrasound-based mechanisms needs to gain full access to the device’s microphone, as there is currently no way to gain access only to the ultrasound spectrum. This clearly violates the least privilege principle, as the app has now access to all audible frequencies and allows a potentially malicious developer to request access to the microphone for ultrasound-pairing purposes, and then use it to eavesdrop the user’s discussions. This also results in any ultrasound-enabled apps to risk being perceived as “potentially malicious” by the users.

Mitigation

To address these shortcomings, we developed a set of countermeasures aiming to provide protection to the users in the short and medium term. The first one is an extension for the Google Chrome browser, which filters out all ultrasounds from the audio output of the websites loaded by the user. The extension actively prevents web pages from emitting inaudible sounds, and thus completely thwarts any unsolicited ultrasound-tracking attempts. Furthermore, we developed a patch for the Android permission system that allows finer-grained control over the audio channel, and forces applications to declare their intention to capture sound from the inaudible spectrum. This will properly separate the permissions for listening to audible sound and sound in the high-frequency spectrum, and will enable the end users to selectively filter the ultrasound frequencies out of the signal acquired by the smartphone microphone.

More importantly, we argue that the ultrasound ecosystem can be made secure only with the standardization of the ultrasound beacon format. During this process, the threat model will be revised and the necessary security features for uBeacons will be specified. Once this process is completed, APIs for handling uBeacons can be implemented in all major operating systems. Such an API would provide methods for uBeacon discovery, processing, generation and emission, similar to those found in the Bluetooth Low Energy APIs. Thereafter, all ultrasound-enabled apps will need access only to this API, and not to the device’s microphone. Thus, solving the problem of over-privileging that exposed the user’s sensitive data to third-party apps.

Discussion

Our work provides an early warning on the risks looming in the ultrasound ecosystem, and lays the foundations for the secure use of this set of technologies. However, it also raises several questions regarding the security of the audio channel. For instance, in a recent incident a journalist accidentally injected commands to several amazon echo devices, which then allegedly tried to order products online. This underlines the need for security features in the audio channel. Unfortunately, due to the variety of use cases, a universal solution that could be applied to the lower communication layers seems unlikely. Instead, solutions must be sought in the higher communications layers (e.g., application layers), and should be the outcome of careful threat modeling.

Inaugural Lecture: Zero-Knowledge Proofs

We held our annual ACE-CSR event in November 2016. The last talk was my inaugural lecture to full professor. I did not write the summary below myself, hence the use of third person, not because I now consider myself royalty! 🙂

In introducing Jens Groth, professor of cryptology, George Danezis, head of the information security group, commented that Groth’s work provided the only viable solutions to many of the hard privacy problems he himself was tackling. To most qualified engineers, he said, the concept of zero-knowledge proofs seems impossible: the idea is to show the properties of a secret without revealing them. A zero-knowledge proof could, for example, verify the result of a computation on some data without revealing the data itself. Most engineers believe that you must choose between integrity and confidentiality; Groth has proved this is not true. In addition, Danezis praised Groth’s work as highly creative, characterised by great mathematical depth and subtlety, and admired Groth’ willingness to speak his mind fearlessly even to government funders. Angela Sasse, head of the department, called Groth’s work “security tools we’re going to need for future generations”, and noted that simultaneously with these other accomplishments Groth helped put in place the foundation for the group as it is today.

Groth, jokingly opted to structure his talk around papers he’s had rejected to illustrate how hard it can be to publish innovative research. The concept of zero-knowledge proofs originated with a 1985 paper by Shafi Goldwasser, Silvio Micali, and Charles Rackoff. Zero-knowledge proofs have three characteristics: completeness (the prover can convince the verifier that the statement is true); soundness (the claiming prover cannot convince the verifier when the statement is false); and secrecy (no information other than the truth of the statement is leaked, even when the prover is interacting with a verifier who cheats). Groth illustrated the latter idea with a simple card trick: he asked an audience member to choose a card and then say whether the card was a heart or not. If the respondent shows all the cards that are not hearts, counting these proves that the selected card must be a heart without revealing what it is.

Zero-knowledge proofs can be extended to think about more complicated statements. Groth listed some examples:

  • Assert that a logical formula has an assignment to the variables that makes it true
  • Verify that a graph is Hamiltonian – that is, there is a path that touches each vertex exactly once
  • That a set of inputs into a Boolean circuit will produce an output of 1
  • Any statement of the general form U belongs to some NP-language L

Groth could see many possible applications for these proofs: signatures, encryption, electronic cash, electronic auctions, internet voting, multiparty computation, and verifiable cloud computing. His overall career has focused on building versatile and efficient proofs with the goal of moving them from being expensive and slow to being just a fraction of the cost of the task that’s being executed so that people would stop thinking about the cost and just toss them in as a standard part of any transaction.

Continue reading Inaugural Lecture: Zero-Knowledge Proofs

Security intrusions as mechanisms

The practice of security often revolves around figuring out what (malicious act) happened to a system. This historical inquiry is the focus of forensics, specifically when the inquiry regards a policy violation (such as a law). The results of forensic investigation might be used to fix the impacted system, attribute the attack to adversaries, or build more resilient systems going forwards. However, to execute any of these purposes, the investigator first must discover the mechanism of the intrusion.

As discussed at an ACE seminar last October, one common framework for this discovery task is the intrusion kill chain. Mechanisms, mechanistic explanation, and mechanism discovery have highly-developed meanings in the biological and social sciences, but the word is not often used in information security. In a recent paper, we argue that incident response and forensics investigators would be well-served to make use of the existing literature on mechanisms, as thinking about intrusion kill chains as mechanisms is a productive and useful way to frame the work.

To some extent, thinking mechanistically is a description of what (certain) scientists do. But the mechanisms literature within philosophy of science is not merely descriptive. The normative benefits extolled include that thinking mechanistically is an effective heuristic for searching out useful explanations; mechanisms provide the most coherent unity to complex fields of study; and that mechanistic explanation is necessary to guide selection among potential studies given limited experimental resources, experiment design decisions, and interpretation of statistical results. I previously argued that capricious use of biological metaphors is bad for information security. We are keenly aware that these benefits of mechanistic explanation need to apply to security as and for security, not merely because they work in other sciences.

Our paper demonstrates how we can cast the intrusion kill chain, the diamond model, and other models of security intrusions as mechanistic models. This casting begins to demonstrate the mosaic unity of information security. Campaigns are made up of attacks. Attacks, as modeled by the kill chain, have multiple steps. In a specific attack, the delivery step might be accomplished by a drive-by-download. So we demonstrate how drive-by-downloads are a mechanism, one among many possible delivery mechanisms. This description is a schema to be filled in during a particular drive-by download incident with a specific URL and specific javascript, etc. The mechanistic schema of the delivery mechanism informs the investigator because it indicates what types of network addresses to look for, and how to fit them into the explanation quickly. This process is what Lindley Darden calls schema instantiation in the mechanism discovery literature.

Our argument is not that good forensics investigators do not do such mechanism discovery strategies. Rather, it is precisely that good investigators do do them. But we need to describe what it is good investigators in fact do. We do not currently, and that lack makes teaching new investigators particularly difficult. Thinking about intrusions as mechanisms unlocks an expansive literature on good ways to do mechanism discovery. This literature will make it easier to codify what good investigators do, which among other benefits allows us to better teach sound methodological practices to incoming investigators.

Our paper on this topic was published in the open-access Journal of Cybersecurity, as Thinking about intrusion kill chains as mechanisms, by Jonathan M. Spring and Eric Hatleback.