We’re fighting the good fight, but are we making full use of the armoury?

In this post, we reflect on the current state of cybersecurity and the fight against cybercrime, and identify, we believe, one of the most significant drawbacks Information Security is facing. We argue that what is needed is a new, complementary research direction towards improving systems security and cybercrime mitigation, which combines the technical knowledge and insights gained from Information Security with the theoretical models and systematic frameworks from Environmental Criminology. For the full details, you can read our paper – “Bridging Information Security and Environmental Criminology Research to Better Mitigate Cybercrime.”

The fight against cybercrime is a long and arduous one. Not a day goes by without us hearing (at an increasingly alarming rate) the latest flurry of cyber attacks, malware operations, (not so) newly discovered vulnerabilities being exploited, and the odd sprinkling of a high-profile victim or a widely-used service being compromised by cybercriminals.

A burden borne for too long?

Today, the topic of security and cybercrime is one that is prominent in a number of circles and fields of research (e.g., crime science and criminology, law, sociology, economics, policy, policing), not to talk of wider society. However, for the best part of the last half-century, the burden of understanding and mitigating cybercrime, and improving systems security has been predominantly borne by information security researchers and computer engineers. Of course, this is entirely reasonable. As circumstances had long dictated, the exponential penetration and growth in the capability of digital technologies co-dependently brought the opportunity for malicious exploitation, and, alongside it, the need to combat and prevent such malicious activities. Enter the arms race.

However, and potentially the biggest downside to holding this solitary responsibility for so long, the traditional, InfoSec approach to security and cybercrime prevention has leaned heavily towards the technical side of this mantle: discovering vulnerabilities, creating patches, redefining secure software design (e.g., STRIDE), conceptualising threat models for technical systems, and developing technologies to detect, prevent, and/or counter these threats. But, with the threat landscape of today, is this enough?

Taking stock

Make no mistake, it is clear that such technical skill-sets and innovations that abound and are produced from information security are invaluable in keeping up with similarly skilled and innovative cybercriminals. Unfortunately, however, one may find that such approaches to security and preventing cybercrime are generally applied in an ad hoc manner and lacking systemic structure, with, on the other hand, focus being constantly drawn towards the “top” vulnerabilities (e.g., OWASP’s Top 10) as opposed to “less important” ones (which are just as capable in enabling a compromise), or focus on the most recent wave of cyber threats as opposed to those only occurring a few years ago (e.g., the Mirai botnet and its variants, which have been active as far back as 2016, but are seemingly now on the back burner of priorities).

How much thought, can we say, is being directed towards understanding the operational aspects of cybercrime – the journey of the cybercriminal, so to speak, and their opportunity framework? Patching vulnerabilities and taking down botnets are indeed important, but how much attention is placed on understanding criminal displacement and adaptation: the shift of criminal activity from one form to another, or the adaptation of cybercriminals (and even the victims, targets, and other stakeholders), in reaction to new countermeasures? Are system designers taking the necessary steps to minimise the attack surfaces effectively, considering all techniques available to them? Is it enough to look a problem at face value, develop a state-of-the-art detection system, and move on to the next one? We believe much more can and should be done.

Continue reading We’re fighting the good fight, but are we making full use of the armoury?

UK Parliament on protecting consumers from economic crime

On Friday, the UK House of Commons Treasury Committee published their report on the consumer perspective of economic crime. I’ve frequently addressed this topic in my research, as well as here on Bentham’s Gaze, so I’m pleased to see several recommendations of the committee match what myself and colleagues have proposed. In other respects, the report could have gone further, so as well as discussing the positive aspects of the report, I would also like to suggest what more could be done to reduce economic crime and protect its victims.

Irrevocable payments are the wrong default

Transfers between UK bank accounts will generally use the Faster Payment System (FPS), where money will immediately show up in the recipient account. FPS transfers cannot be revoked, even in the case of fraud. This characteristic protects banks because if fraudulently obtained funds leave the banking system, the bank receiving the transfer has no obligation to reimburse the victim.

In contrast, the clearing system for paper cheques permits payments to be revoked for a few days after the funds appeared in the recipient account, should there have been a fraud. This period allows customers to quickly make use of funds they receive, while still giving a window of opportunity for banks and customers to identify and prevent fraud. There’s no reason why this same revocation window could not be applied to fully electronic payment systems like FPS.

In my submissions to consultations on how to prevent push payment scams, I argued that irrevocable payments are the wrong default, and transfers should be possible to reverse in cases of fraud. The same argument applies to consumer-oriented cryptocurrencies like Libra. I’m pleased to see that the Treasury Committee agrees and they have recommended that when a customer sends money to an account for the first time, that transfer be revocable for 24 hours.

Introducing Confirmation of Payee, finally

The banking industry has been planning on launching the Confirmation of Payee system to check if the name of the recipient of a transfer matches what the customer sending money thinks. The committee is clearly frustrated with delays on deploying this system, first promised for September 2018 but since slipped to March 2020. Confirmation of Payee will be a helpful tool for customers to help avoid certain frauds. Still, I’m pleased the committee also recognise it’s limitations and that the “onus will always be on financial firms to develop further methods and technologies to keep up with fraudsters.” It is for this reason that I argued that a bank showing a customer a Confirmation of Payee mismatch should not be a sufficient condition to hold customers liable for fraud, and the push-payment scam reimbursement scheme is wrong to do so. It doesn’t look like the committee is asking for the situation to be changed though.

Continue reading UK Parliament on protecting consumers from economic crime

Forcing phone companies to secure SMS authentication would cause more harm than good

Food-writer and campaigner, Jack Monroe, has become the latest high-profile victim of a SIM-swap scam, losing over £5,000 from both her PayPal and bank accounts to a criminal who intercepted SMS authentication codes. The Payment Services Directive requires that fraud victims get their money back, but banks act slowly and sometimes push the blame onto the victims. When (as I hope it will) the money does eventually get reimbursed, she’s still unlikely to get compensation for any consequential losses, nor for the upset caused. It’s no surprise that this experience has been stressful for Jack, as it would be for most people in her situation.

I am, of course, very sympathetic to victims of SIM-swap fraud and recognise the substantial financial costs, as well as the sense of violation that results. Naturally, fingers are being pointed at the phone companies and followed up with calls for them to do better identity checks before transferring a phone number to a new SIM card. I think this isn’t entirely fair. The real problem is that banks and other payment service providers have outsourced authentication to phone companies, without ensuring that the level of security is appropriate for the sums of money at risk. Banks could have chosen to distribute authentication devices and find a secure way to re-issue ones that are lost. Instead, they have pushed this task to unwitting phone companies, and leave their customers to pick up the pieces when things go wrong, so don’t have an incentive to do better.

More secure SMS authentication

But what if phone companies did do a better job at handing out replacement SIM cards? Maybe the government could push them into doing so, or the phone companies might just get fed up with the bad press. Phone companies could, in principle, set up a process for re-issuing SIM cards which would meet the highest standards of the banking industry. Let’s put aside the issue that SMS was never designed to be secure, and that these processes would put up the cost of phone bills – would it fix the problem? I would argue that it does not. Processes good enough for banking authentication could lock people out of receiving phone calls, and disproportionately harm the most vulnerable members of society.

Continue reading Forcing phone companies to secure SMS authentication would cause more harm than good

Measuring mobility without violating privacy – a case study of the London Underground

In the run-up to this year’s Privacy Enhancing Technologies Symposium (PETS 2019), I noticed some decidedly non-privacy-enhancing behaviour. Transport for London (TfL) announced they will be tracking the wifi MAC addresses of devices being carried on London Underground stations. Before storing a MAC address it will be hashed with a key, but since this key will remain unchanged for an extended period (2 years), it will be possible to track the movements of an individual over this period through this pseudonymous ID. These traces are likely enough to link records back to the individual with some knowledge of that person’s distinctive travel plans. Also, for as long as the key is retained it would be trivial for TfL (or someone who stole the key) to convert the someone’s MAC address into its pseudonymised form and indisputably learn that that person’s movements.

TfL argues that under the General Data Protection Regulations (GDPR), they don’t need the consent of individuals they monitor because they are acting in the public interest. Indeed, others have pointed out the value to society of knowing how people typically move through underground stations. But the GDPR also requires that organisations minimise the amount of personal data they collect. Could the same goal be achieved if TfL irreversibly anonymised wifi MAC addresses rather than just pseudonymising them? For example, they could truncate the hashed MAC address so that many devices all have the same truncated anonymous ID. How would this affect the calculation of statistics of movement patterns within underground stations? I posed these questions in a presentation at the PETS 2019 rump session, and in this article, I’ll explain why a set of algorithms designed to violate people’s privacy can be applied to collect wifi mobility information while protecting passenger privacy.

It’s important to emphasise that TfL’s goal is not to track past Underground customers but to predict the behaviour of future passengers. Inferring past behaviours from the traces of wifi records may be one means to this end, but it is not the end in itself, and TfL creates legal risk for itself by holding this data. The inferences from this approach aren’t even going to be correct: wifi users are unlikely to be typical passengers and behaviour will change over time. TfL’s hope is the inferred profiles will be useful enough to inform business decisions. Privacy-preserving measurement techniques should be judged by the business value of the passenger models they create, not against how accurate they are at following individual passengers around underground stations in the past. As the saying goes, “all models are wrong, but some are useful”.

Simulating privacy-preserving mobility measurement

To explore this space, I built a simple simulation of Euston Station inspired by one of the TfL case studies. In my simulation, there are two platforms (A and B) and six types of passengers. Some travel from platform A to B; some from B to A; others enter and leave the station at one platform (A or B). Of the passengers that travel between platforms, they can take either the fast route (taking 2 minutes on average) or the slow route (taking 4 minutes on average). Passengers enter the station at a Poisson arrival rate averaging one per second. The probabilities that each new passenger is of a particular type are shown in the figure below. The goal of the simulation is to infer the number of passengers of each type from observations of wifi measurements taken at platforms A and B.

Continue reading Measuring mobility without violating privacy – a case study of the London Underground

Beyond Regulators’ Concerns, Facebook’s Libra Cryptocurrency Faces another Big Challenge: The Risk of Fraud

Facebook has attracted attention through the announcement of their blockchain-based payment network, Libra. This won’t be the first payment system Facebook has launched, but what makes Facebook’s Libra distinctive is that rather than transferring Euros or dollars, the network is designed for a new cryptocurrency, also called Libra. This currency is backed by a reserve of nationally-issued currencies, and so Facebook hopes it will avoid the high volatility of cryptocurrencies like Bitcoin. As a result, Libra won’t be attractive to currency speculators, but Facebook hopes that it will, therefore, be useful for its stated goal – to be a “simple global currency and financial infrastructure that empowers billions of people.”

Reducing currency volatility is only one step towards meeting this goal of scaling cryptocurrencies to billions of users. The Libra blockchain design addresses how the network can maintain the high throughput and low transaction fees needed to compete with existing payment networks like Visa or MasterCard. However, a question that is equally important but as yet unanswered is how Facebook will develop a secure authentication and fraud prevention system that can scale to billions of users while maintaining good usability and low cost.

Facebook designed the Libra network, but in contrast to traditional payment networks, the Libra network is open. Anyone can send transactions through the network, and anyone can write programs (known as “smart contracts”) that control how, and under what conditions, funds can move between Libra accounts. To comply with anti-money-laundering regulations, Know Your Customer (KYC) checks will be performed, but only when Libra enters or leaves the network through exchanges. Transactions moving funds within the network should be accepted if they meet the criteria set out in the applicable smart contract, regardless of who sent them.

The Libra network isn’t even restricted to transactions transferring the Libra currency. Facebook has explicitly designed the Libra blockchain to make it easy for anyone to implement their own currency and benefit from the same technical facilities that Facebook designed for its currency. Other blockchains have tried this. For example, Ethereum has spawned hundreds of special-purpose currencies. But programming a smart contract to implement a new currency is difficult, and errors can be costly. The programming language for smart contracts within the Libra network is designed to help developers avoid some of the most common mistakes.

Facebook’s Libra and Securing the Calibra Wallet

There’s more to setting up an effective currency than just the technology: regulatory compliance, a network of exchanges, and monetary policy are essential. Facebook, through setting up the Libra Association, is focusing its efforts here solely on the Libra currency. The widespread expectation is, therefore, at least initially, the Libra cryptocurrency will be the dominant usage of the network, and most users will send and receive funds through the Calibra wallet smartphone app, developed by a Facebook subsidiary. From the perspective of the vast majority of the world, the Calibra wallet will be synonymous with Facebook’s Libra, and so damage to trust in Calibra will damage the reputation of Libra as a whole.

Continue reading Beyond Regulators’ Concerns, Facebook’s Libra Cryptocurrency Faces another Big Challenge: The Risk of Fraud

Confirmation of Payee is coming, but will it protect bank customers from fraud?

The Payment System Regulator (PSR) has just announced that the UK’s six largest banks must check whether the name of the recipient of a transfer matches what the sender thinks. This new feature should help address a security loophole in online payments: the name of the recipient of transfers is ignored, contrary to expectations and unlike cheques. This improved security should make some fraud more difficult, but banks must be prevented from exploiting the change to unfairly shift the liability of the remaining crime to the victims.

The PSR’s target is for checks to be fully implemented by March 2020, somewhat later than their initial promise to Parliament of September 2018 and subsequent target of July 2019. The new proposal, known as Confirmation of Payee, also only covers the six largest banking groups, but this should cover 90% of transfers. Its goal is to defend against criminals who trick victims into transferring funds under the false pretence that the money is going to the victim’s new account, whereas it is really going to the criminal. The losses from such fraud, known as push payment scams, are often life-changing, resulting in misery for the victims.

Checks on the recipient name will make this particular scam harder, so while unlikely to prevent all types of push payment scams they will hopefully force criminals to adopt strategies that are easier to prevent. The risk that consumer representatives and regulators will need to watch out for is that these new security measures could result in victims being unfairly held liable. This scenario is, unfortunately, likely because the voluntary consumer protection code for push payment scams excuses the bank from liability if they show the customer a Confirmation of Payee warning.

Warning fatigue and misaligned incentives

In my response to the consultation over this consumer protection code, I raised the issue of “warning fatigue” – that customers will be shown many irrelevant warnings while they do online banking and this reduces the likelihood that customers will notice important ones. Even Confirmation of Payee warnings will frequently be wrong, such as if the recipient’s bank account is under a different name to what the sender expects. If the two names are very dissimilar, the sender won’t be given more details but if the name entered is close to the name in bank records the sender should be told what the correct one is and asked to compare.

Continue reading Confirmation of Payee is coming, but will it protect bank customers from fraud?

Will dispute resolution be Libra’s Achilles’ heel?

Facebook’s new cryptocurrency, Libra, has the ambitious goal of being the “financial infrastructure that empowers billions of people”. This aspiration will only be achievable if the user-experience (UX) of Libra and associated technologies is competitive with existing payment channels. Now, Facebook has an excellent track record of building high-quality websites and mobile applications, but good UX goes further than just having an aesthetically pleasing and fast user interface. We can already see aspects of Libra’s design that will have consequences on the experience of its users making payments.

For example, the basket of assets that underly the Libra currency should ensure that its value should not be too volatile in terms of the currencies represented within the reserve, so easing international payments. However, Libra’s value will fluctuate against every other currency, creating a challenge for domestic payments. People won’t be paid their salary in Libra any time soon, nor will rents be denominated in Libra. If the public is expected to hold significant value in Libra, fluctuations in the currency markets could make the difference between someone being able to pay their rent or not – a certainly unwelcome user experience.

Whether the public will consider the advantages of Libra are worth the exposure to the foibles of market fluctuations is an open question, but in this post, I’m mostly going to discuss the consequences another design decision baked into the design of Libra: that transactions are irrevocable. Once a transaction is accepted by the validator network, the user may proceed “knowing that the transaction can never be changed or reversed“. This is a common design decision within cryptocurrencies because it ensures that companies, governments and regulators should be unable to revoke payments they dislike. When coupled with anonymity or decentralisation, to prevent blacklisted transactions being blocked beforehand, irrevocability creates a censorship-resistant payment system.

Mitigating the cost of irrevocable transactions

Libra isn’t decentralised, nor is it anonymous, so it is unlikely to be particularly resistant to censorship over matters when there is an international consensus. Irrevocability does, however, make fraud easier because once stolen funds are gone, they cannot be reinstated, even if the fraud is identified. Other cryptocurrencies share Libra’s irrevocability (at least in theory), but they are designed for technically sophisticated users, and their risk of theft can be balanced against the potentially substantial gains (and losses) that can be made from volatile cryptocurrencies. While irrevocability is common within cryptocurrencies, it is not within the broader payments industry. Exposing billions of people to the risk of their Libra holdings being stolen, without the potential for recourse, isn’t good UX. I’ve argued that irrevocable transactions protect the interests of financial institutions over those of the public, and are the wrong default for payments. Eventually, public pressure and regulatory intervention forced UK banks to revoke fraudulent transactions, and they take on the risk that they are unable to do so, rather than pass it onto the victims. The same argument applies to Libra, and if fraud becomes common, they will see the same pressures as UK banks.

Continue reading Will dispute resolution be Libra’s Achilles’ heel?

Digital Exclusion and Fraud – the Dark Side of Payments Authentication

Today, the Which? consumer rights organisation released the results from its study of how people are excluded from financial services as a result of banks changing their rules to mandate that customers use new technology. The research particularly focuses on banks now requiring that customers register a mobile phone number and be able to receive security codes in SMS messages while doing online banking or shopping. Not only does this change result in digital exclusion – customers without mobile phones or good network coverage will struggle to make payments – but as I discuss in this post, it’s also bad for security.

SMS-based security codes are being introduced to help banks meet their September 2019 deadline to comply with the Strong Customer Authentication requirements of the EU Payment Services Directive 2. These rules state that before making a payment from a customer’s account, the bank must independently verify that the customer really intended to make this payment. UK banks almost universally have decided to meet their obligation by sending a security code in an SMS message to the customer’s mobile phone and asking the customer to type this code into their web browser.

The problem that Which? identified is that some customers don’t have mobile phones, some that do have mobile phones don’t trust their bank with the number, and even those who are willing to share their mobile phone number with the bank might not have network coverage when they need to make a payment. A survey of Which? members found that nearly 1 in 5 said they would struggle to receive the security code they need to perform online banking transactions or online card payments. Remote locations have poorer network coverage than average and it is these areas that are likely to be disproportionately affected by the ongoing bank branch closure programmes.

Outsourcing security

The aspect of this scenario that I’m particularly interested in is why banks chose SMS messages as a security technology in the first place, rather than say sending out dedicated authentication devices to their customers or making a smartphone app. SMS has the advantage that customers don’t need to install an app or have the inconvenience of having to carry around an extra authentication device. The bank also saves the cost of setting up new infrastructure, other than hooking up their payment systems to the phone network. However, SMS has disadvantages – not only does it exclude customers in areas of poor network coverage, but it also effectively outsources security from the bank to the phone networks.

Continue reading Digital Exclusion and Fraud – the Dark Side of Payments Authentication

How Accidental Data Breaches can be Facilitated by Windows 10 and macOS Mojave

Inadequate user interface designs in Windows 10 and macOS Mojave can cause accidental data breaches through inconsistent language, insecure default options, and unclear or incomprehensible information. Users could accidentally leak sensitive personal data. Data controllers in companies might be unknowingly non-compliant with the GDPR’s legal obligations for data erasure.

At the upcoming Annual Privacy Forum 2019 in Rome, I will be presenting the results of a recent study conducted with my colleague Mark Warner, exploring the inadequate design of user interfaces (UI) as a contributing factor in accidental data breaches from USB memory sticks. The paper titled “Fight to be Forgotten: Exploring the Efficacy of Data Erasure in Popular Operating Systems” will be published in the conference proceedings at a later date but the accepted version is available now.

Privacy and security risks from decommissioned memory chips

The process of decommissioning memory chips (e.g. USB sticks, hard drives, and memory cards) can create risks for data protection. Researchers have repeatedly found sensitive data on devices they acquired from second-hand markets. Sometimes this data was from the previous owners, other times from third persons. In some cases, highly sensitive data from vulnerable people were found, e.g. Jones et al. found videos of children at a high school in the UK on a second-hand USB stick.

Data found this way had frequently been deleted but not erased, creating the risk that any tech-savvy future owner could access it using legally available, free to download software (e.g., FTK Imager Lite 3.4.3.3). Findings from these studies also indicate the previous owners’ intentions to erase these files and prevent future access by unauthorised individuals, and their failure to sufficiently do so. Moreover, these risks likely extend from the second-hand market to recycled memory chips – a practice encouraged under Directive 2012/19/EU on ‘waste electrical and electronic equipment’.

The implications for data security and data protection are substantial. End-users and companies alike could accidentally cause breaches of sensitive personal data of themselves or their customers. The protection of personal data is enshrined in Article 8 of the Charter of Fundamental Rights of the European Union, and the General Data Protection Regulation (GDPR) lays down rules and regulation for the protection of this fundamental right. For example, data processors could find themselves inadvertently in violation of Article 17 GDPR Right to Erasure (‘right to be forgotten’) despite their best intentions if they failed to erase a customer’s personal data – independent of whether that data was breached or not.

Seemingly minor design choices, the potential for major implications

The indication that people might fail to properly erase files from storage, despite their apparent intention to do so, is a strong sign of system failure. We know since more than twenty years that unintentional failure of users at a task is often caused by the way in which [these] mechanisms are implemented, and users’ lack of knowledge. In our case, these mechanisms are – for most users – the UI of Windows and macOS. When investigating these mechanisms, we found seemingly minor design choices that might facilitate unintentional data breaches. A few examples are shown below and are expanded upon in the full publication of our work.

Continue reading How Accidental Data Breaches can be Facilitated by Windows 10 and macOS Mojave

The Government published its draft domestic abuse bill, but risks ignoring the growing threat of tech abuse

Dr Leonie Tanczer, who leads UCL’s “Gender and IoT” research team, reflects on the release of the draft Domestic Abuse Bill and points out that in its current form, it misses emphasis on emerging forms of technology-facilitated abuse.

On the 21st of January, the UK Government published its long-awaited Domestic Abuse Bill. The 196-page long document focuses on a wide range of issues from providing a first statutory definition of domestic abuse to the recognition of economic abuse as well as controlling and coercive non-physical behaviour. In recent years, abuse facilitated through information and communication technologies (ICT) has been growing. Efforts to mitigate these forms of abuse (e.g. social media abuse or cyberstalking) are already underway, but we expect new forms of “technology-facilitated abuse” (“tech abuse”) to become more commonplace amongst abusive perpetrators.

We are currently seeing an explosion in the number of Internet-connected devices on the market, from gadgets like Amazon’s Alexa and Google’s Home hub, to “smart” home heating, lighting, and security systems as well as wearable devices such as smartwatches. What these products have in common is their networked capability, and many also include features such as remote, video, and voice control as well as GPS location tracking. While these capabilities are intended to make modern life easier, they also create new means to facilitate psychological, physical, sexual, economic, and emotional abuse as well as controlling and manipulating behaviour.

Although so-called “Internet of Things” (IoT) usage is not yet widespread (there were 7.5 billion total connections worldwide in 2017), GSMA expects there to be 25 billion devices globally by 2025. Sadly, we have already started to see examples of these technologies being misused. An investigation last year by the New York Times showed how perpetrators of domestic abuse could use apps on their smartphones to remotely control household appliances like air conditioning or digital locks in order to monitor and frighten their victims. In 2018, we saw a husband convicted of stalking after spying on his estranged wife by hacking into their wall-mounted iPad.

The risk of being a victim of tech abuse falls predominantly on women and especially migrant women. This is a result of men still being primarily in charge of the purchase and maintenance of technical systems as well as women and girls being over-proportionally affected by domestic abuse.

The absence of ‘tech abuse’ in the draft bill

While the four objectives of the draft Bill (promote awareness, protect and support, transform the justice process, improve performance) are to be welcomed, the absence of sufficient reference to the growing rise of tech abuse is a significant omission and missed opportunity.

Continue reading The Government published its draft domestic abuse bill, but risks ignoring the growing threat of tech abuse