“Do you see what I see?” ask Tor users, as a large number of websites reject them but accept non-Tor users

If you use an anonymity network such as Tor on a regular basis, you are probably familiar with various annoyances in your web browsing experience, ranging from pages saying “Access denied” to having to solve CAPTCHAs before continuing. Interestingly, these hurdles disappear if the same website is accessed without Tor. The growing trend of websites extending this kind of “differential treatment” to anonymous users undermines Tor’s overall utility, and adds a new dimension to the traditional threats to Tor (attacks on user privacy, or governments blocking access to Tor). There is plenty of anecdotal evidence about Tor users experiencing difficulties in browsing the web, for example the user-reported catalog of services blocking Tor. However, we don’t have sufficient detail about the problem to answer deeper questions like: how prevalent is differential treatment of Tor on the web; are there any centralized players with Tor-unfriendly policies that have a magnified effect on the browsing experience of Tor users; can we identify patterns in where these Tor-unfriendly websites are hosted (or located), and so forth.

Today we present our paper on this topic: “Do You See What I See? Differential Treatment of Anonymous Users” at the Network and Distributed System Security Symposium (NDSS). Together with researchers from the University of Cambridge, University College London, University of California, Berkeley and International Computer Science Institute (Berkeley), we conducted comprehensive network measurements to shed light on websites that block Tor. At the network layer, we scanned the entire IPv4 address space on port 80 from Tor exit nodes. At the application layer, we fetch the homepage from the most popular 1,000 websites (according to Alexa) from all Tor exit nodes. We compare these measurements with a baseline from non-Tor control measurements, and uncover significant evidence of Tor blocking. We estimate that at least 1.3 million IP addresses that would otherwise allow a TCP handshake on port 80 block the handshake if it originates from a Tor exit node. We also show that at least 3.67% of the most popular 1,000 websites block Tor users at the application layer.

Continue reading “Do you see what I see?” ask Tor users, as a large number of websites reject them but accept non-Tor users

Are Payment Card Contracts Unfair?

While US bank customers are almost completely protected against fraudulent transactions, in Europe banks are entitled to refuse to reimburse victims of fraud under certain circumstances. The EU Payment Services Directive (PSD) is supposed to protect customers but if the bank can show that the customer has been “grossly negligent” in following the terms and conditions associated with their account then the PSD permits the bank to pass the cost of any fraud on to the customer. The bank doesn’t have to show how the fraud happened, just that the most likely explanation for the fraud is that the customer failed to follow one of the rules set out by the bank on how to protect the account. To be certain of obtaining a refund, a customer must be able to show that he or she complied with every security-related clause of the terms and conditions, or show that the fraud was a result of a flaw in the bank’s security.

The bank terms and conditions, and how customers comply with them, are therefore of critical importance for consumer protection. We set out to answer the question: are these terms and conditions fair, taking into account how customers use their banking facilities? We focussed on ATM payments and in particular how customers manage PINs because ATM fraud losses are paid for by the banks and not retailers, so there is more incentive for the bank to pass losses on to the customer. In our paper – “Are Payment Card Contracts Unfair?” – published at Financial Cryptography 2016 we show that customers have too many PINs to remember them unaided and therefore it is unrealistic to expect customers to comply with all the rules banks set: to choose unguessable PINs, not write them down, and not use them elsewhere (even with different banks). We find that, as a result of these unrealistic expectations, customers do indeed make use of coping mechanisms which reduce security and violate terms and conditions, which puts them in a weak position should they be the victim of fraud.

We surveyed 241 UK bank customers and found that 19% of customers have four or more PINs and 48% of PINs are used at most once a month. As a result of interference (one memory being confused with another) and forgetting over time (if a memory is not exercised frequently it will be lost) it is infeasible for typical customers to remember all their bank PINs unaided. It is therefore inevitable that customers forget PINs (a quarter of our participants had forgot a 4-digit PIN at least once) and take steps to help them recall PINs. Of our participants, 33% recorded their PIN (most commonly in a mobile phone, notebook or diary) and 23% re-used their PIN elsewhere (most commonly to unlock their mobile phone). Both of these coping mechanisms would leave customers at risk of being found liable for fraud.

Customers also use the same PIN on several cards to reduce the burden of remembering PINs – 16% of our participants stated they used this technique, with the same PIN being used on up to 9 cards. Because each card allows the criminal 6 guesses at a PIN (3 on the card itself, and 3 at an ATM) this gives criminals an excellent opportunity to guess PINs and again leave the customer responsible for the losses. Such attacks are made easier by the fact that customers can change their PIN to one which is easier to remember, but also probably easier for criminals to guess (13% of our participants used a mnemonic, most commonly deriving the PIN from a specific date). Bonneau et al. studied in more detail exactly how bank customers select PINs.

Finally we found that PINs are regularly shared with other people, most commonly with a spouse or partner (32% of our participants). Again this violates bank terms and conditions and so puts customers at risk of being held liable for fraud.

Holding customers liable for not being able to follow unrealistic, vague and contradictory advice is grossly unfair to fraud victims. The Payment Services Directive is being revised, and in our submission to the consultation by the European Banking Authority we ask that banks only be permitted to pass fraud losses on to customers if they use authentication mechanisms which are feasible to use without undue effort, given the context of how people actually use banking facilities in normal life. Alternatively, regulators could adopt the tried and tested US model of strong consumer protection, and allow banks to manage risks through fraud detection. The increased trust from this approach might increase transaction volumes and profit for the industry overall.


“Are Payment Card Contracts Unfair?” by Steven J. Murdoch, Ingolf Becker, Ruba Abu-Salma, Ross Anderson, Nicholas Bohm, Alice Hutchings, M. Angela Sasse, and Gianluca Stringhini will be presented at Financial Cryptography and Data Security, Barbados, 22–26 February 2016.

Jens Groth – Non-interactive zero knowledge proofs, efficient enough to be used in practice

The UCL information security group’s Jens Groth, a cryptographer, is one of 17 UCL researchers who have been awarded a Starting Grant by the European Research Council. The five-year grant will fund his work on the cryptographic building block known as “zero-knowledge proofs”, a widely applicable technique that underpins both security and trust. ERC Starting Grants are intended to support up-and-coming research leaders who are beginning to set up a research team and conduct independent research. Groth’s focus is on making zero- knowledge proofs more efficient so that they can become cheap enough to become a commonly used, standard security technology. Groth is also the recipient of a second grant from the Engineering and Physical Sciences Research Council to fund his work on another related topic, structure-preserving pairing-based cryptography.

“My line of thinking,” says Groth, “is that there’s been a lot of research into zero-knowledge proofs, but I don’t know of any groups taking entire systems from theory through to very practical implementations. I am hoping to build a group that will cover this entire span, and by covering it thoroughly get some very significant gains in efficiency.” Covering that entire spectrum from the purely abstract to the built system is important, he says, because “Practice can influence theory and give us some insight into what we should be looking at. Also, when you start implementing things, lots of surprising discoveries can come up.”

Unlike other types of cryptographic tools, such as public key cryptography, used in such widely used mass-market applications as SSL (used to secure data passed over the Web while in transit), Groth notes that zero-knowledge proofs are more likely to be a behind-the-scenes technology that end users will never touch directly.

“It will be hidden inside the system,” he says. “The main properties we want are completeness, soundness – and zero-knowledge.” Completeness means the prover can convince the verifier when a statement is true. Soundness means the prover cannot convince the verifier when the statement is false. Finally, zero-knowledge means that there is no leakage of information even if the prover is interacting with a fraudulent verifier.

Continue reading Jens Groth – Non-interactive zero knowledge proofs, efficient enough to be used in practice

Our contributions to the UK Distributed Ledger Technology report

The UK Government Office for Science, has published its report on “Distributed ledger technology: beyond block chain” to which UCL’s Sarah Meiklejohn, Angela Sasse and myself (George Danezis) contributed parts of the security and privacy material. The review, looks largely at economic, innovation and social aspects of these technologies. Our part discusses potential threats to ledgers, as well as opportunities to build robust security systems using ledgers (Certificate Transparency & CONIKS), and overcome privacy challenges, including a mention of the z.cash technology.

You can listen to the podcast interview Sarah gave on the report’s use cases, recommendations, but also more broadly future research directions for distributed ledgers, such as better privacy protection.

In terms of recommendation, I personally welcome the call for the Government Digital Services, and other innovation bodies to building capacity around distributed ledger technologies. The call for more research for efficient and secure ledgers (and the specific mention of cryptography research) is also a good idea, and an obvious need. When it comes to the specific security and privacy recommendation, it simply calls for standards to be established and followed. Sadly this is mildly vague: a standards based approach to designing secure and privacy-friendly systems has not led to major successes. Instead openness in the design, a clear focus on key end-to-end security properties, and the involvement of a wide community of experts might be more productive (and less susceptible to subversion).

The report is well timed: our paper on “Centrally Banked Crypto-Currencies” will be presented in February at a leading security conference, NDSS 2016, by Sarah Meiklejohn, largely inspired by the research agenda published by the Bank of England. It provides some answers to the problems of scalability and eco-friendliness of current proof-of-work based ledger design.