Jens Groth – Non-interactive zero knowledge proofs, efficient enough to be used in practice

The UCL information security group’s Jens Groth, a cryptographer, is one of 17 UCL researchers who have been awarded a Starting Grant by the European Research Council. The five-year grant will fund his work on the cryptographic building block known as “zero-knowledge proofs”, a widely applicable technique that underpins both security and trust. ERC Starting Grants are intended to support up-and-coming research leaders who are beginning to set up a research team and conduct independent research. Groth’s focus is on making zero- knowledge proofs more efficient so that they can become cheap enough to become a commonly used, standard security technology. Groth is also the recipient of a second grant from the Engineering and Physical Sciences Research Council to fund his work on another related topic, structure-preserving pairing-based cryptography.

“My line of thinking,” says Groth, “is that there’s been a lot of research into zero-knowledge proofs, but I don’t know of any groups taking entire systems from theory through to very practical implementations. I am hoping to build a group that will cover this entire span, and by covering it thoroughly get some very significant gains in efficiency.” Covering that entire spectrum from the purely abstract to the built system is important, he says, because “Practice can influence theory and give us some insight into what we should be looking at. Also, when you start implementing things, lots of surprising discoveries can come up.”

Unlike other types of cryptographic tools, such as public key cryptography, used in such widely used mass-market applications as SSL (used to secure data passed over the Web while in transit), Groth notes that zero-knowledge proofs are more likely to be a behind-the-scenes technology that end users will never touch directly.

“It will be hidden inside the system,” he says. “The main properties we want are completeness, soundness – and zero-knowledge.” Completeness means the prover can convince the verifier when a statement is true. Soundness means the prover cannot convince the verifier when the statement is false. Finally, zero-knowledge means that there is no leakage of information even if the prover is interacting with a fraudulent verifier.

Continue reading Jens Groth – Non-interactive zero knowledge proofs, efficient enough to be used in practice