Microsoft Ireland: winning the battle for privacy but losing the war

On Thursday, Microsoft won an important federal appeals court case against the US government. The case centres on a warrant issued in December 2013, requiring Microsoft to disclose emails and other records for a particular msn.com email address which was related to a narcotics investigation. It transpired that these emails were stored in a Microsoft datacenter in Ireland, but the US government argued that, since Microsoft is a US company and can easily copy the data into the US, a US warrant would suffice. Microsoft argued that the proper way for the US government to obtain the data is through the Mutual Legal Assistance Treaty (MLAT) between the US and Ireland, where an Irish court would decide, according to Irish law, whether the data should be handed over to US authorities. Part of the US government’s objection to this approach was that the MLAT process is sometimes very slow, although though the Irish government has committed to consider any such request “expeditiously”.

The appeal court decision is an important victory for Microsoft (following two lower courts ruling against them) because they sell their european datacenters as giving their european customers confidence that their data will be subject to the more stringent european privacy laws. Microsoft’s case was understandably supported by other technology companies in the same position, as well as civil liberties organisations such as the Electronic Frontier Foundation in the US and the Open Rights Group in the UK. However, I have mixed opinions about the outcome: while probably the right decision in this case, the wider consequences could be detrimental to privacy.

Both sides of the case wanted to set a precedent (if not legally, at least in practice). The US government wanted US law to apply to data held by US companies, wherever in the world the data resides. Microsoft wanted the location of the data to imply which legal regime applied, and so their customers could be confident that their own country’s laws will be respected, provided Microsoft have a datacenter in their own country (or at least one with compatible laws). My concern is that this ruling will give false assurance to customers of US companies, because in other circumstances a different decision could quite easily be taken.

We know about this case because Microsoft chose to challenge it in court, and were able to do so. This is the first time Microsoft has challenged a US warrant for data stored in their Irish datacenter despite it being in operation for three years prior to the case. Had the email address been associated with a more serious crime, or the demand for emails accompanied by a gagging order, it may not have been challenged. Microsoft and other technology companies may still choose to accept, or may even be forced to accept, the applicability of future US warrants to data they control, regardless of the court decision last week. One extreme approach to compel this approach would be for the US to jail employees until their demands are complied with.

For this reason, I have argued that control over data is more important than where data resides. If a company does not have the technical capability to comply with an order, it is easier for them to defend their case, and so protects both the company’s customers and staff. Microsoft have taken precisely this approach for their new German datacenters, which will be operated by staff in Germany working for a German “data trustee” (Deutsche Telekom). In contrast to their Irish datacenter, Microsoft staff will be unable to access customer data, except with the permission of and oversight from the data trustee.

While the data trustee model resists information being obtained through improper legal means, a malicious employee could still break rules for personal gain, or the systems designed to process legal requests could be hacked into. With modern security techniques it is possible to do better. End-to-end encryption for instant messaging is one such example, because (if designed properly) the communications provider does not have access to messages they carry. A more sophisticated approach is “distributed consensus”, where a decision is only taken if a majority of participants agree. The consensus process is automated and enforced through cryptography, ensuring that rules are respected even if some participants are malicious. Critical decisions in the Tor network and in Bitcoin are taken this way. More generally, there is a growing recognition that purely legal or procedural mechanisms are insufficient to protect privacy. This is one of the common threads present in much of the research presented at the Privacy Enhancing Technologies Symposium, being held this week in Darmstadt: recognising that there will always be imperfections in software, people and procedures and showing that nevertheless individual’s privacy can still be protected.

Exceptional access provisions in the Investigatory Powers Bill

The Investigatory Powers Bill, being debated in Parliament this week, proposes the first wide-scale update in 15 years to the surveillance powers of the UK law-enforcement and intelligence agencies.

The Bill has several goals: to consolidate some existing surveillance powers currently either scattered throughout other legislation or not even publicly disclosed, to create a wide range of new surveillance powers, and to change the process of authorisation and oversight surrounding the use of surveillance powers. The Bill is complex and, at 245 pages long, makes scrutiny challenging.

The Bill has had its first and second readings in the House of Commons, and has been examined by relevant committees in the Commons. The Bill will now be debated in the ‘report stage’, where MPs will have the chance to propose amendments following committee scrutiny. After this it will progress to a third reading, and then to the House of Lords for further debate, followed by final agreement by both Houses.

So far, four committee reports have been published examining the draft Bill, from the Intelligence and Security Committee of Parliament, the joint House of Lords/House of Commons committee specifically set up to examine the draft Bill, the House of Commons Science and Technology committee (to which I served as technical advisor) and the Joint Committee on Human Rights.

These committees were faced with a difficult task of meeting an accelerated timetable for the Bill, with the government aiming to have it become law by the end of 2016. The reason for the haste is that the Bill would re-instate and extend the ability of the government to compel companies to collect data about their users, even without there being any suspicion of wrongdoing, known as “data retention”. This power was previously set out in the EU Data Retention Directive, but in 2014 the European Court of Justice found it be unlawful.

Emergency legislation passed to temporarily permit the government to continue their activities will expire in December 2016 (but may be repealed earlier if an appeal to the European Court of Justice succeeds).

The four committees which examined the Bill together made 130 recommendations but since the draft was published, the government only slightly changed the Bill, and only a few minor amendments were accepted by the Public Bills committee.

Many questions remain about whether the powers granted by the Bill are justifiable and subject to adequate oversight, but where insights from computer security research are particularly relevant is on the powers to grant law enforcement the ability to bypass normal security mechanisms, sometimes termed “exceptional access”.

Continue reading Exceptional access provisions in the Investigatory Powers Bill

Insecure by design: protocols for encrypted phone calls

The MIKEY-SAKKE protocol is being promoted by the UK government as a better way to secure phone calls. The reality is that MIKEY-SAKKE is designed to offer minimal security while allowing undetectable mass surveillance, through the introduction a backdoor based around mandatory key-escrow. This weakness has implications which go further than just the security of phone calls.

The current state of security for phone calls leaves a lot to be desired. Land-line calls are almost entirely unencrypted, and cellphone calls are also unencrypted except for the radio link between the handset and the phone network. While the latest cryptography standards for cellphones (3G and 4G) are reasonably strong it is possible to force a phone to fall back to older standards with easy-to-break cryptography, if any. The vast majority of phones will not reveal to their user whether such an attack is under way.

The only reason that eavesdropping on land-line calls is not commonplace is that getting access to the closed phone networks is not as easy compared to the more open Internet, and cellphone cryptography designers relied on the equipment necessary to intercept the radio link being only affordable by well-funded government intelligence agencies, and not by criminals or for corporate espionage. That might have been true in the past but it certainly no longer the case with the necessary equipment now available for $1,500. Governments, companies and individuals are increasingly looking for better security.

A second driver for better phone call encryption is the convergence of Internet and phone networks. The LTE (Long-Term Evolution) 4G cellphone standard – under development by the 3rd Generation Partnership Project (3GPP) – carries voice calls over IP packets, and desktop phones in companies are increasingly carrying voice over IP (VoIP) too. Because voice calls may travel over the Internet, whatever security was offered by the closed phone networks is gone and so other security mechanisms are needed.

Like Internet data encryption, voice encryption can broadly be categorised as either link encryption, where each intermediary may encrypt data before passing it onto the next, or end-to-end encryption, where communications are encrypted such that only the legitimate end-points can have access to the unencrypted communication. End-to-end encryption is preferable for security because it avoids intermediaries being able to eavesdrop on communications and gives the end-points assurance that communications will indeed be encrypted all the way to their other communication partner.

Current cellphone encryption standards are link encryption: the phone encrypts calls between it and the phone network using cryptographic keys stored on the Subscriber Identity Module (SIM). Within the phone network, encryption may also be present but the network provider still has access to unencrypted data, so even ignoring the vulnerability to fall-back attacks on the radio link, the network providers and their suppliers are weak points that are tempting for attackers to compromise. Recent examples of such attacks include the compromise of the phone networks of Vodafone in Greece (2004) and Belgacom in Belgium (2012), and the SIM card supplier Gemalto in France (2010). The identity of the Vodafone Greece hacker remains unknown (though the NSA is suspected) but the attacks against Belgacom and Gemalto were carried out by the UK signals intelligence agency – GCHQ – and only publicly revealed from the Snowden leaks, so it is quite possible there are others attacks which remain hidden.

Email is typically only secured by link encryption, if at all, with HTTPS encrypting access to most webmail and Transport Layer Security (TLS) sometimes encrypting other communication protocols that carry email (SMTP, IMAP and POP). Again, the fact that intermediaries have access to plaintext creates a vulnerability, as demonstrated by the 2009 hack of Google’s Gmail likely originating from China. End-to-end email encryption is possible using the OpenPGP or S/MIME protocols but their use is not common, primarily due to their poor usability, which in turn is at least partially a result of having to stay compatible with older insecure email standards.

In contrast, instant messaging applications had more opportunity to start with a clean-slate (because there is no expectation of compatibility among different networks) and so this is where much innovation in terms of end-to-end security has taken place. Secure voice communication however has had less attention than instant messaging so in the remainder of the article we shall examine what should be expected of a secure voice communication system, and in particular see how one of the latest and up-coming protocols, MIKEY-SAKKE, which comes with UK government backing, meets these criteria.

MIKEY-SAKKE and Secure Chorus

MIKEY-SAKKE is the security protocol behind the Secure Chorus voice (and also video) encryption standard, commissioned and designed by GCHQ through their information security arm, CESG. GCHQ have announced that they will only certify voice encryption products through their Commercial Product Assurance (CPA) security evaluation scheme if the product implements MIKEY-SAKKE and Secure Chorus. As a result, MIKEY-SAKKE has a monopoly over the vast majority of classified UK government voice communication and so companies developing secure voice communication systems must implement it in order to gain access to this market. GCHQ can also set requirements of what products are used in the public sector and as well as for companies operating critical national infrastructure.

UK government standards are also influential in guiding purchase decisions outside of government and we are already seeing MIKEY-SAKKE marketed commercially as “government-grade security” and capitalising on their approval for use in the UK government. For this reason, and also because GCHQ have provided implementers a free open source library to make it easier and cheaper to deploy Secure Chorus, we can expect wide use MIKEY-SAKKE in industry and possibly among the public. It is therefore important to consider whether MIKEY-SAKKE is appropriate for wide-scale use. For the reasons outlined in the remainder of this article, the answer is no – MIKEY-SAKKE is designed to offer minimal security while allowing undetectable mass surveillance though key-escrow, not to provide effective security.

Continue reading Insecure by design: protocols for encrypted phone calls

ACE-CSR opening event 2015/16: talks on malware, location privacy and wiretap law

The opening event for the UCL Academic Centre of Excellence for Cyber Security Research in the 2015–2016 academic term featured three speakers: Earl Barr, whose work on approximating program equivalence has won several ACM distinguished paper awards; Mirco Musolesi from the Department of Geography, whose background includes a degree in computer science and an interest in analysing myriad types of data while protecting privacy; and Susan Landau, a professor at Worcester Polytechnic Institute and a visiting professor at UCL and an expert on cyber security policy whose books include Privacy On the Line: the Politics of Wiretapping and Encryption (with Whitfield Diffie) and Surveillance or Security? The Risks Posed by New Wiretapping Technologies.

Detecting malware and IP theft through program similarity

Earl Barr is a member of the software systems engineering group and the Centre for Research on Evolution, Search, and Testing. His talk outlined his work using program similarity to determine whether two arbitrary programs have the same behaviour in two areas relevant to cyber security: malware and intellectual property theft in binaries (that is, code reused in violation of its licence).

Barr began by outlining his work on detecting malware, comparing the problem to that facing airport security personnel trying to find a terrorist among millions of passengers. The work begins with profiling: collect two zoos, and then ask if the program under consideration is more likely to belong to the benign zoo or the malware zoo.

Rather than study the structure of the binary, Barr works by viewing the program as strings of 0s and 1s, which may not coincide with the program’s instructions, and using information theory to create a measure of dissimilarity, the normalised compression distance (NCD). The NCD serves as an approximation of the Kolmogorov Complexity, a mathematical measure of the complexity of the shortest description of an object, which is then normalised using a compression algorithm that ignores the details of the instruction set architecture for which the binary is written.

Using these techniques to analyse a malware zoo collected from sources such as Virus Watch, Barr was able to achieve a 95.7% accuracy rate. He believes that although this technique isn’t suitable for contemporary desktop anti-virus software, it opens a new front in the malware detection arms race. Still, Barr is aware that malware writers will rapidly develop countermeasures and his group is already investigating counter-countermeasures.

Malware writers have three avenues for blocking detection: injecting new content that looks benign; encryption; and obfuscation. Adding new content threatens the malware’s viability: raising the NCD by 50% requires doubling the size of the malware. Encryption can be used against the malware writer: applying a language model across the program reveals a distinctive saw-toothed pattern of regions with low surprise and low entropy alternating with regions of high surprise and high entropy (that is, regions with ciphertext). Obfuscation is still under study: the group is using three obfuscation engines available for Java and applying them repeatedly to Java malware. Measuring the NCD after each application shows that after 100 iterations the NCD approaches 1 (that is, the two items being compared are dissimilar), but that two of the three engines make errors after 200 applications. Unfortunately for malware writers, this technique also causes the program to grow in size. The cost of obfuscation to malware writers may therefore be greater than that imposed upon white hats.

Continue reading ACE-CSR opening event 2015/16: talks on malware, location privacy and wiretap law

An Analysis of Reshipping Mule Scams

Credit cards are a popular target for cybercriminals. Miscreants infect victim computers with malware that reports back to their command and control servers any credit card information that the user inserts in her computer, or compromise large retail stores stealing their customers’ credit card information. After obtaining credit card details from their victims, cybercriminals face the problem of monetising such information. As we recently covered on this blog, cybercriminals monetise stolen credit cards by cloning them and using very clever tricks to bypass the Chip and PIN verification mechanisms. This way they are able to use the counterfeit credit card in a physical store, purchase expensive items such as cigarettes, and re-sell them for a profit.

Another possible way for cybercriminals to monetise stolen credit cards is by purchasing goods on online stores. To this end, they need more information than the one contained on the credit card alone: for those of you who are familiar with online shopping, some merchants require a billing address as well to allow the purchase (which is called “card not present transaction”). This additional information is often available to the criminal – it might, for example, have been retrieved together with the credit card credentials as part of a data breach against an online retailer. When purchasing goods online, cybercriminals face the issue of shipping: if they shipped the stolen goods to their home address, this would make it easy for law enforcement to find and arrest them. For this reason, miscreants need intermediaries in the shipping process.

In our recent paper, which was presented at the ACM Conference on Computer and Communications Security (CCS), we analyse a criminal scheme designed to help miscreants who wish to monetise stolen credit cards as we described: A cybercriminal (called operator) recruits unsuspecting citizens with the promise of a rewarding work-from-home job. This job involves receiving packages at home and having to re-ship them to a different address, provided by the operator. By accepting the job, people unknowingly become part of a criminal operation: the packages that they receive at their home contain stolen goods, and the shipping destinations are often overseas, typically in Russia. These shipping agents are commonly known as reshipping mules (or drops for stuff in the underground community). The operator then rents shipping mules as a service to cybercriminals wanting to ship stolen goods abroad. The cybercriminals taking advantage of such services are known as stuffers in the underground community. As a price for the service, the stuffer will pay a commission to the operator for each package reshipped through the service.

reshippinggraphic-580x328

In collaboration with the FBI and the United States Postal Inspection Service (USPIS) we conducted a study on such reshipping scam sites. This study involved data coming from seven different reshipping sites, and provides the research community with invaluable insights on how these operations are run. We observed that the vast majority of the re-shipped packages end up in the Moscow, Russia area, and that the goods purchased with stolen credit cards span multiple categories, from expensive electronics such as Apple products, to designer clothes, to DSLR cameras and even weapon accessories. Given the amount of goods shipped by the reshipping mule sites that we analysed, the annual revenue generated from such operations can span between 1.8 and 7.3 million US dollars. The overall losses are much higher though: the online merchant loses an expensive item from its inventory and typically has to refund the owner of the stolen credit card. In addition, the rogue goods typically travel labeled as “second hand goods” and therefore custom taxes are also evaded. Once the items purchased with stolen credit cards reach their destination they will be sold on the black market by cybercriminals.

Studying the management of the mules lead us to some surprising findings. When applying for the job, people are usually required to send the operator copies of their ID cards and passport. After they are hired, mules are promised to be paid at the end of their first month of employment. However, from our data it is clear that mules are usually never paid. After their first month expires, they are never contacted back by the operator, who just moves on and hires new mules. In other words, the mules become victims of this scam themselves, by never seeing a penny. Moreover, because they sent copies of their documents to the criminals, mules can potentially become victims of identity theft.

Our study is the first one shedding some light on these monetisation schemes linked to credit card fraud. We believe the insights in this paper can provide law enforcement and researchers with a better understanding of the cybercriminal ecosystem and allow them to develop more effective mitigation techniques against these problems.

Just how sophisticated will card fraud techniques become?

In late 2009, my colleagues and I discovered a serious vulnerability in EMV, the most widely used standard for smart card payments, known as “Chip and PIN” in the UK. We showed that it was possible for criminals to use a stolen credit or debit card without knowing the PIN, by tricking the terminal into thinking that any PIN is correct. We gave the banking industry advance notice of our discovery in early December 2009, to give them time to fix the problem before we published our research. After this period expired (two months, in this case) we published our paper as well explaining our results to the public on BBC Newsnight. We demonstrated that this vulnerability was real using a proof-of-concept system built from equipment we had available (off-the shelf laptop and card reader, FPGA development board, and hand-made card emulator).

No-PIN vulnerability demonstration

After the programme aired, the response from the banking industry dismissed the possibility that the vulnerability would be successfully exploited by criminals. The banking trade body, the UK Cards Association, said:

“We believe that this complicated method will never present a real threat to our customers’ cards. … Neither the banking industry nor the police have any evidence of criminals having the capability to deploy such sophisticated attacks.”

Similarly, EMVCo, who develop the EMV standards said:

“It is EMVCo’s view that when the full payment process is taken into account, suitable countermeasures to the attack described in the recent Cambridge Report are already available.”

It was therefore interesting to see that in May 2011, criminals were caught having stolen cards in France then exploiting a variant of this vulnerability to buy over €500,000 worth of goods in Belgium (which were then re-sold). At the time, not many details were available, but it seemed that the techniques the criminals used were much more sophisticated than our proof-of-concept demonstration.

We now know more about what actually happened, as well as the banks’ response, thanks to a paper by the researchers who performed the forensic analysis that formed part of the criminal investigation of this case. It shows just how sophisticated criminals could be, given sufficient motivation, contrary to the expectations in the original banking industry response.

Continue reading Just how sophisticated will card fraud techniques become?

Gianluca Stringhini – Cyber criminal operations and developing systems to defend against them

Gianluca Stringhini’s research focuses on studying cyber criminal operations and developing systems to defend against them.

Such operations tend to follow a common pattern. First the criminal operator lures a user into going to a Web site and tries to infect them with malware. Once infected, the user is joined to a botnet. From there, the user’s computer is instructed to perform malicious activities on the criminal’s behalf. Stringhini, whose UCL appointment is shared between the Department of Computer Science and the Department of Security and Crime Science, has studied all three of these stages.

Stringhini, who is from Genoa, developed his interest in computer security at college: “I was doing the things that all college students are doing, hacking, and breaking into systems. I was always interested in understanding how computers work and how one could break them. I started playing in hacking competitions.”

At the beginning, these competitions were just for fun, but those efforts became more serious when he arrived in 2008 at UC Santa Barbara, which featured one of the world’s best hacking teams, a perennial top finisher in Defcon’s Capture the Flag competition. It was at Santa Barbara that his interest in cyber crime developed, particularly in botnets and the complexity and skill of the operations that created them. He picked the US after Christopher Kruegel, whom he knew by email, invited him to Santa Barbara for an internship. He liked it, so he stayed and did a PhD studying the way criminals use online services such as social networks

“Basically, the idea is that if you have an account that’s used by a cyber criminal it will be used differently than one used by a real person because they will have a different goal,” he says. “And so you can develop systems that learn about these differences and detect accounts that are misused.” Even if the attacker tries to make their behaviour closely resemble the user’s own, ultimately spreading malicious content isn’t something normal users intend to do, and the difference is detectable.

This idea and Stringhini’s resulting PhD research led to his most significant papers to date.

Continue reading Gianluca Stringhini – Cyber criminal operations and developing systems to defend against them

What are the social costs of contactless fraud?

Contactless payments are in the news again: in the UK the spending limit has been increased from £20 to £30 per transaction, and in Australia the Victoria Police has argued that contactless payments are to blame for an extra 100 cases of credit card fraud per week. These frauds are where multiple transactions are put through, keeping each under the AUS $100 (about £45) limit. UK news coverage has instead focussed on the potential for cross-channel fraud: where card details are skimmed from contactless cards then used for fraudulent online purchases. In a demonstration, Which? skimmed volunteers cards at a distance then bought a £3,000 TV with the card numbers and expiry dates recorded.

The media have been presenting contactless payments are insecure; the response from the banking industry is to point out that customers are not liable for the fraudulent transactions. Both are in some ways correct, but in other ways are missing the point.

The law in the UK (Payment Services Regulations (PSR) 2009, Regulation 62) indeed does say that the customers are entitled to a refund for fraudulent transactions. However a bank will only do this if they are convinced the customer has not authorised the transaction, and was not negligent. In my experience, a customer who is unable to clearly, concisely and confidently explain why they are entitled to a refund runs a high risk of not getting one. This fact will disproportionately disadvantage the more vulnerable members of society.

Continue reading What are the social costs of contactless fraud?

Understanding Online Dating Scams

Our research on online dating scams will be presented at the  Conference on Detection of Intrusions and Malware and Vulnerability Assessment (DIMVA) that will be held in Milan in July. This work was a collaboration with colleagues working for Jiayuan, the largest online dating site in China, and is the first large-scale measurement of online dating scams, comprising a dataset of more than 500k accounts used by scammers on Jiayuan across 2012 and 2013.

As someone who has spent a considerable amount of time researching ways to mitigate malicious activity on online services, online dating scams picked my interest for a number of reasons. First, online dating sites operate following completely different dynamics compared to traditional online social networks. On a regular social network (say Facebook or Linkedin) users connect with people they know in real life, and any request to connect from an unknown person is considered unsolicited and potentially malicious. Many malicious content detection systems (including my own) leverage this observation to detect malicious accounts. Putting people who don’t know each other in contact, however, is the main purpose of online dating sites – for this reason, traditional methods to detect fake and malevolent accounts cannot be applied to this context, and the development of a new threat model is required. As a second differentiator, online dating users tend to use the site only for the first contact, and move to other media (text messages, instant messaging) after that. Although that is fine for regular use, it makes it more difficult to track scammers, because the online dating site loses visibility of the messages exchanged between users after they have left the site. Third, online dating scams have a strong human component, which differentiates them heavily from traditional malicious activity on online services such as spam, phishing, or malware.

We identified three types of scams happening on Jiayuan. The first one involves advertising of  escort services or illicit goods, and is very similar to traditional spam. The other two are far more interesting and specific to the online dating landscape. One type of scammers are what we call swindlers. For this scheme, the scammer starts a long-distance relationship with an emotionally vulnerable victim, and eventually asks her for money, for example to purchase the flight ticket to visit her. Needless to say, after the money has been transferred the scammer disappears. Another interesting type of scams that we identified are what we call dates for profit. In this scheme, attractive young ladies are hired by the owners of fancy restaurants. The scam then consists in having the ladies contact people on the dating site, taking them on a date at the restaurant, having the victim pay for the meal, and never arranging a second date. This scam is particularly interesting, because there are good chances that the victim will never realize that he’s been scammed – in fact, he probably had a good time.

In the paper we analyze the accounts that we detected belonging to the different scam types, and extract typical information about the demographics that scammers pose as in their accounts, as well as the demographics of their victims. For example, we show that swindlers usually pose as widowed mid-aged men and target widowed women. We then analyze the modus operandi of scam accounts, showing that specific types of scam accounts have a higher chance of getting the attention of their victims and receiving replies than regular users. Finally, we show that the activity performed on the site by scammers is mostly manual, and that the use of infected computers and botnet to spread content – which is prominent on other online services – is minimal.

We believe that the observations provided in this paper will shed some light on a so far understudied problem in the field of computer security, and will help researchers in developing systems that can automatically detect such scam accounts and block them before they have a chance to reach their victims.

The full paper is available on my website.

Update (2015-05-15): There is press coverage of this paper in Schneier on Security and BuzzFeed.

Banks undermine chip and PIN security because they see profits rise faster than fraud

The Chip and PIN card payment system has been mandatory in the UK since 2006, but only now is it being slowly introduced in the US. In western Europe more than 96% of card transactions in the last quarter of 2014 used chipped credit or debit cards, compared to just 0.03% in the US.

Yet at the same time, in the UK and elsewhere a new generation of Chip and PIN cards have arrived that allow contactless payments – transactions that don’t require a PIN code. Why would card issuers offer a means to circumvent the security Chip and PIN offers?

Chip and Problems

Chip and PIN is supposed to reduce two main types of fraud. Counterfeit fraud, where a fake card is manufactured based on stolen card data, cost the UK £47.8m in 2014 according to figures just released by Financial Fraud Action. The cryptographic key embedded in chip cards tackles counterfeit fraud by allowing the card to prove its identity. Extracting this key should be very difficult, while copying the details embedded in a card’s magnetic stripe from one card to another is simple.

The second type of fraud is where a genuine card is used, but by the wrong person. Chip and PIN makes this more difficult by requiring users to enter a PIN code, one (hopefully) not known to the criminal who took the card. Financial Fraud Action separates this into those cards stolen before reaching their owner (at a cost of £10.1m in 2014) and after (£59.7m).

Unfortunately Chip and PIN doesn’t work as well as was hoped. My research has shown how it’s possible to trick cards into accepting the wrong PIN and produce cloned cards that terminals won’t detect as being fake. Nevertheless, the widespread introduction of Chip and PIN has succeeded in forcing criminals to change tactics – £331.5m of UK card fraud (69% of the total) in 2014 is now through telephone, internet and mail order purchases (known as “cardholder not present” fraud) that don’t involve the chip at all. That’s why there’s some surprise over the introduction of less secure contactless cards.

Continue reading Banks undermine chip and PIN security because they see profits rise faster than fraud