Thoughts on the Future Implications of Microsoft’s Legal Approach towards the TrickBot Takedown

Just this week, Microsoft announced its takedown operation against the TrickBot botnet, in collaboration with other cybersecurity partners, such as FS-ISAC, ESET, and Symantec. This takedown followed Microsoft’s successful application for a court order this month, enabling them to enact technical disruption against the botnet. Such legal processes are typical and necessary precursors to such counter-operations.

However, what was of particular interest, in this case, was the legal precedent Microsoft (successfully) sought, which was based on breaches of copyright law. Specifically, they founded their claim on the alleged reuse (and misuse) of Microsoft’s copyrighted software – the Windows 8 SDK – by the TrickBot malware authors.

Now, it is clear that this takedown operation is not likely to cripple the entirety of the TrickBot operation. As numerous researchers have found (e.g., Stone-Gross et al., 2011; Edwards et al., 2015), a takedown operation often works well in the short-term, but the long-term effects are highly variable. More often than not, unless they are arrested, and their infrastructure is seized, botnet operators tend to respond to such counter-operations by redeploying their infrastructure to new servers and ISPs, moving their operations to other geographic regions or new targets, and/or adapting their malware to become more resistant to detection and analysis. In fact, these are just some of the behaviours we observed in a case-by-case longitudinal study on botnets targeted by law enforcement (one of which involved Dyre, a predecessor of the TrickBot malware). A pre-print of this study is soon to be released.

So, no, I’m not proposing to discuss the long-term efficacy of takedown operations such as this. That is for another blog post.

Rather, what I want to discuss (or, perhaps, more accurately, put forward as some initial thoughts) are the potential implications of Microsoft’s legal approach to obtaining the court order (which is incumbent for such operations) on future botnet takedowns, particularly in the area of malicious code reuse.

Continue reading Thoughts on the Future Implications of Microsoft’s Legal Approach towards the TrickBot Takedown

Consider unintended harms of cybersecurity controls, as they might harm the people you are trying to protect

Well-meaning cybersecurity risk owners will deploy countermeasures in an effort to manage the risks they see affecting their services or systems. What is not often considered is that those countermeasures may produce unintended, negative consequences themselves. These unintended consequences can potentially be harmful, adversely affecting user behaviour, user inclusion, or the infrastructure itself (including services of others).

Here, I describe a framework co-developed with several international researchers at a Dagstuhl seminar in mid-2019, resulting in an eCrime 2019 paper later in the year. We were drawn together by an interest in understanding unintended harms of cybersecurity countermeasures, and encouraging efforts to preemptively identify and avoid these harms. Our collaboration on this theme drew on our varied and multidisciplinary backgrounds and interests, including not only risk management and cybercrime, but also security usability, systems engineering, and security economics.

We saw it as necessary to focus on situations where there is often an urgency to counter threats, but where efforts to manage threats have the potential to introduce harms. As documented in the recently published seminar report, we explored specific situations in which potential harms may make resolving the overarching problems more difficult, and as such cannot be ignored – especially where potentially harmful countermeasures ought to be avoided. Example case studies of particular importance include tech-abuse by an intimate partner, online disinformation campaigns, combating CEO fraud and phishing emails in organisations, and online dating fraud.

Consider disinformation campaigns, for example. Efforts to counter disinformation on social media platforms can include fact-checking and automated detection algorithms behind the scenes. These can reduce the burden on users to address the problem. However, automation can also reduce users’ scepticism towards the information they see; fact-checking can be appropriated as a tool by any one group to challenge viewpoints of dissimilar groups.

We then see how unintended harms can shift the burden of managing cybersecurity to others in the ecosystem without them necessarily expecting it or being prepared for it. There can be vulnerable populations which are disadvantaged by the effects of a control more than others. An example may be legitimate users of social media who are removed – or have their content removed – from a platform, due to traits shared with malicious actors or behaviour, e.g., referring to some of the same topics, irrespective of sentiment – an example of ‘Misclassification’, in the list below. If a user, user group, or their online activity are removed from the system, the risk owner for that system may not notice that problems have been created for users in this way – they simply will not see them, as their actions have excluded them. Anticipating and avoiding unintended harms is then crucial before any such outcomes can occur.

Continue reading Consider unintended harms of cybersecurity controls, as they might harm the people you are trying to protect

A Reflection on the Waves Of Malice: Malicious File Distribution on the Web (part 2)

The first part of this article introduced the malicious file download dataset and the delivery network structure. This final part explores the types of files delivered, discusses how the network varies over time, and concludes with challenges for the research community.

The Great Divide: A PUP Ecosystem and a Malware Ecosystem

We found a notable divide in the delivery of PUP and malware. First, there is much more PUP than malware in the wild: we found PUP-to-malware ratios of 5:1 by number of SHA-2s, and 17:2 by number of raw downloads. Second, we found that mixed delivery mechanisms of PUP and malware are not uncommon (e.g., see our Opencandy case study in the paper). Third, the highly connected Giant Component is predominantly a PUP Ecosystem (8:1 PUP-to-malware by number of SHA-2s), while the many “islands” of download activity outside of this component are predominantly a Malware Ecosystem (1.78:1 malware-to-PUP by number of SHA-2s).

Comparing the structures of the two ecosystems,we found that the PUP Ecosystem leverages a higher degree of IP address and autonomous system (AS) usage per domain and per dropper than the Malware Ecosystem, possibly indicating higher CDN usage or the use of evasive fast-flux techniques to change IP addresses (though, given earlier results, the former is the more likely). On the other hand, the Malware Ecosystem was attributed with fewer SHA-2s being delivered per domain than the PUP Ecosystem with the overall numbers in raw downloads remaining the same, which could again be indicative of a disparity in the use of CDNs between the two ecosystems (i.e., CDNs typically deliver a wide range of content). At the same time, fewer suspicious SHA-2s being delivered per domain could also be attributable to evasive techniques being employed (e.g., malicious sites delivering a few types of files before changing domain) or distributors in this ecosystem dealing with fewer clients and smaller operations.

We tried to estimate the number of PPIs in the wild by defining a PPI service as a network-only component (or group of components aggregated by e2LD) that delivered more than one type of malware or PUP family. Using this heuristic, we estimated a lower bound of 394 PPIs operating on the day, 215 of which were in the PUP Ecosystem. In terms of proportions, we found that the largest, individual PPIs in the PUP and Malware Ecosystems involved about 99% and 24% of all e2LDs and IPs in their ecosystems, respectively.

With there being a number of possible explanations for these structural differences between ecosystems, and such a high degree of potential PPI usage in the wild (especially within the PUP Ecosystem), this is clearly an area in which further research is required.

Keeping Track of the Waves

The final part of the study involved tracking these infrastructures and their activities over time. Firstly, we generated tracking signatures of the network-only (server-side) and file-only (client-side) delivery infrastructures. In essence, this involved tracking the root and trunk nodes in a component, which typically had the highest node degrees, and thus, were more likely to be stable, as opposed to the leaf nodes, which were more likely to be ephemeral.

Continue reading A Reflection on the Waves Of Malice: Malicious File Distribution on the Web (part 2)

A Reflection on the Waves Of Malice: Malicious File Distribution on the Web (part 1)

The French cybercrime unit, C3N, along with the FBI and Avast, recently took down the Retadup botnet that infected more than 850,000 computers, mostly in South America. Though this takedown operation was successful, the botnet was created as early as 2016, with the operators reportedly making millions of euros since. It is clear that large-scale analysis, monitoring, and detection of malicious downloads and botnet activity, even as far back as 2016, is still highly relevant today in the ongoing battle against increasingly sophisticated cybercriminals.

Malware delivery has undergone an impressive evolution since its inception in the 1980s, moving from being an amateur endeavor to a well-oiled criminal business. Delivery methods have evolved from the human-centric transfer of physical media (e.g., floppy disks), sending of malicious emails, and social engineering, to the automated delivery mechanisms of drive-by downloads (malicious code execution on websites and web advertisements), packaged exploit kits (software packages that fingerprint user browsers for specific exploits to maximise the coverage of potential victims), and pay-per-install (PPI) schemes (botnets that are rented out to other cybercriminals).

Furthermore, in recent times, researchers have uncovered the parallel economy of potentially unwanted programs (PUP), which share many traits with the malware ecosystem (such as their delivery through social engineering and PPI networks), while being primarily controlled by different actors. However with some types of PUP, including adware and spyware, PUP has generally been regarded as an annoyance rather than a direct threat to security.

Using the download metadata of millions of users worldwide from 2015/16, we (Colin C. Ife, Yun Shen, Steven J. Murdoch, Gianluca Stringhini) carried out a comprehensive measurement study in the short-term (a 24-hour period), the medium-term (daily, over the course of a month), and the long-term (weekly, over the course of a year) to characterise the structure of this complex malicious file delivery ecosystem on the Web, and how it evolves over time. This work provides us with answers to some key questions, while, at the same time, posing some more and exemplifying some significant issues that continue to hinder security research on unwanted software activity.

An Overview

There were three main research questions that influenced this study, which we will traverse in the following sections of this post:

    1. What does the malicious file delivery ecosystem look like?
    2. How do the networks that deliver only malware, only PUP, or both compare in structure?
    3. How do these file delivery infrastructures and their activities change over time?

For full technical details, you can refer to our paper – Waves of Malice: A Longitudinal Measurement of the Malicious File Delivery Ecosystem on the Web – published by and presented at the ACM AsiaCCS 2019 conference.

The Data

The dataset was provided (and pre-sanitized) by Symantec and consisted of 129 million download events generated by 12 million users. Each download event contained information such as the timestamp, the SHA-2s of the downloaded file and its parent file, the filename, the size (in bytes), the referrer URL, Host URLs (landing pages after redirection) of the download and parent file, and the IP address hosting the download.

Continue reading A Reflection on the Waves Of Malice: Malicious File Distribution on the Web (part 1)

New threat models in the face of British intelligence and the Five Eyes’ new end-to-end encryption interception strategy

Due to more and more services and messaging applications implementing end-to-end encryption, law enforcement organisations and intelligence agencies have become increasingly concerned about the prospect of “going dark”. This is when law enforcement has the legal right to access a communication (i.e. through a warrant) but doesn’t have the technical capability to do so, because the communication may be end-to-end encrypted.

Earlier proposals from politicians have taken the approach of outright banning end-to-end encryption, which was met with fierce criticism by experts and the tech industry. The intelligence community had been slightly more nuanced, promoting protocols that allow for key escrow, where messages would also be encrypted under an additional key (e.g. controlled by the government). Such protocols have been promoted by intelligence agencies as recently as 2016 and early as the 1990s but were also met with fierce criticism.

More recently, there has been a new set of legislation in the UK, statements from the Five Eyes and proposals from intelligence officials that propose a “different” way of defeating end-to-end encryption, that is akin to key escrow but is enabled on a “per-warrant” basis rather than by default. Let’s look at how this may effect threat models in applications that use end-to-end encryption in the future.

Legislation

On the 31st of August 2018, the governments of the United States, the United Kingdom, Canada, Australia and New Zealand (collectively known as the “Five Eyes”) released a “Statement of Principles on Access to Evidence and Encryption”, where they outlined their position on encryption.

In the statement, it says:

Privacy laws must prevent arbitrary or unlawful interference, but privacy is not absolute. It is an established principle that appropriate government authorities should be able to seek access to otherwise private information when a court or independent authority has authorized such access based on established legal standards.

The statement goes on to set out that technology companies have a mutual responsibility with government authorities to enable this process. At the end of the statement, it describes how technology companies should provide government authorities access to private information:

The Governments of the Five Eyes encourage information and communications technology service providers to voluntarily establish lawful access solutions to their products and services that they create or operate in our countries. Governments should not favor a particular technology; instead, providers may create customized solutions, tailored to their individual system architectures that are capable of meeting lawful access requirements. Such solutions can be a constructive approach to current challenges.

Should governments continue to encounter impediments to lawful access to information necessary to aid the protection of the citizens of our countries, we may pursue technological, enforcement, legislative or other measures to achieve lawful access solutions.

Their position effectively boils down to requiring technology companies to provide a technical means to fulfil court warrants that require them to hand over private data of certain individuals, but the implementation for doing so is open to the technology company.

Continue reading New threat models in the face of British intelligence and the Five Eyes’ new end-to-end encryption interception strategy

UCL runs a digital security training event aimed at domestic abuse support services

In late November, UCL’s “Gender and IoT” (G-IoT) research team ran a “CryptoParty” (digital security training event) followed by a panel discussion which brought together frontline workers, support organisations, as well as policy and tech representatives to discuss the risk of emerging technologies for domestic violence and abuse. The event coincided with the International Day for the Elimination of Violence against Women, taking place annually on the 25th of November.

Technologies such as smartphones or platforms such as social media websites and apps are increasingly used as tools for harassment and stalking. Adding to the existing challenges and complexities are evolving “smart”, Internet-connected devices that are progressively populating public and private spaces. These systems, due to their functionalities, create further opportunities to monitor, control, and coerce individuals. The G-IoT project is studying the implications of IoT-facilitated “tech abuse” for victims and survivors of domestic violence and abuse.

CryptoParty

The evening represented an opportunity for frontline workers and support organisations to upskill in digital security. Attendees had the chance to learn about various topics including phone, communication, Internet browser and data security. They were trained by a group of so-called “crypto angels”, meaning volunteers who provide technical guidance and support. Many of the trainers are affiliated with the global “CryptoParty” movement and the CryptoParty London specifically, as well as Privacy International, and the National Cyber Security Centre.

G-IoT’s lead researcher, Dr Leonie Tanczer, highlighted the importance of this event in light of the socio-technical research that the team pursued so far: “Since January 2018, we worked closely with the statutory and voluntary support sector. We identified various shortcomings in the delivery of tech abuse provisions, including practice-oriented, policy, and technical limitations. We set up the CryptoParty to bring together different communities to holistically tackle tech abuse and increase the technical security awareness of the support sector.”

Continue reading UCL runs a digital security training event aimed at domestic abuse support services

When Convenience Creates Risk: Taking a Deeper Look at Security Code AutoFill on iOS 12 and macOS Mojave

A flaw in Apple’s Security Code AutoFill feature can affect a wide range of services, from online banking to instant messaging.

In June 2018, we reported a problem in the iOS 12 beta. In the previous post, we discussed the associated risks the problem creates for transaction authentication technology used in online banking and elsewhere. We described the underlying issue and that the risk will carry over to macOS Mojave. Since our initial reports, Apple has modified the Security Code AutoFill feature, but the problem is not yet solved.

In this blog post, we publish the results of our extended analysis and demonstrate that the changes made by Apple mitigated one symptom of the problem, but did not address the cause. Security Code AutoFill could leave Apple users in a vulnerable position after upgrading to iOS 12 and macOS Mojave, exposing them to risks beyond the scope of our initial reports.

We describe four example attacks that are intended to demonstrate the risks stemming from the flawed Security Code AutoFill, but intentionally omit the detail necessary to execute them against live systems. Note that supporting screenshots and videos in this article may identify companies whose services we’ve used to test our attacks. We do not infer that those companies’ systems would be affected any more or any less than their competitors.

Flaws in Security Code AutoFill

The Security Code AutoFill feature extracts short security codes (e.g., a one-time password or OTP) from an incoming SMS and allows the user to autofill that code into a web form, webpage, or app when authenticating. This feature is meant to provide convenience, as the user no longer needs to memorize and re-enter a code in order to authenticate. However, this convenience could create risks for the user.

Continue reading When Convenience Creates Risk: Taking a Deeper Look at Security Code AutoFill on iOS 12 and macOS Mojave

Stronger Password, Longer Lifetime: Studying UCL’s password policy

In October 2016, UCL’s Information Services Division (ISD) implemented a new password policy to encourage users to choose stronger passwords. The policy links password lifetime (the time before the password expires) to password strength: The stronger the password, the longer the lifetime.

We (Ingolf Becker, Simon Parkin and M. Angela Sasse) decided to collaborate with the Information Services Division to study the effect of this policy change, and the results were published at USENIX Security this week. We find that users appreciate the choice and respond to the policy by choosing stronger passwords when changing passwords. Even after 16 months the mean password lifetime at UCL continues to increase, yet stronger passwords also lead to more password resets.

The new policy

In the new policy, passwords with Shannon Information Entropy of 50 bits receive a lifetime of 100 days, and passwords with 120 bits receive a lifetime of 350 days:

Password expiry by entropy

Additionally, the new policy penalises the lifetime of passwords containing words from a large dictionary.

Users play the game

We analysed the password lifetime – what we will refer to from here on in as the ‘password strength’ – of all password change and reset events of all pseudonymised users at UCL. The following figure shows the mean password expiration of all users over time, smoothed by 31-day moving averages:

Password expiration over time for all users and new users.

A small drop in password strength was observed between November ’16 and February ’17, as users were moved on to and generally became accustomed to the new system; the kinds of passwords they would have been used to using were at that point not getting them as many days as before (hence the drop). After February ’17, the mean strength increases from 145 days to 170 days in 12 months – an increase of 6.9 bits of entropy. This strongly suggests that users have generally adapted slowly to the new password policy, and eventually make use of the relatively new ability to increase password lifetime by expanding and strengthening their passwords.

Continue reading Stronger Password, Longer Lifetime: Studying UCL’s password policy

What can infosec learn from strategic theory?

Antonio Roque, of MIT Lincoln Labs, has published some provocative papers to arXiv over the last year. These include one on cybersecurity meta-methodology and one on making predictions in cybersecurity. These papers ask some good questions. The one I want to focus on in this short space is what cybersecurity can learn from Carl von Clausewitz’s treatise On War.

This might seem a bit odd to modern computer scientists, but I think it’s a plausible question. Cybersecurity is about winning conflicts, at least sometimes. And as I and others have written, one of the interesting challenges about generating knowledge with a science of security is the fact we have active adversaries. As Roque tells us, generating knowledge in the face of adversaries is also one of the things On War is about.

One important question for me is whether Clausewitz interestingly presaged our current problems (and has since been overtaken), or if On War makes contributions to thinking about cybersecurity that are new and comparable to those from the fields of economics, mathematics, philosophy of science, etc. After a close reading of these papers, my stance is: I have more questions that need answers.

Continue reading What can infosec learn from strategic theory?

Attack papers are case studies

We should treat attack papers like case studies. When we read them, review them, use them for evidence, and learn from them. This claim is not derogatory. Case studies are useful. But like anything, to be useful case studies need to be done and used appropriately.

Let’s be clear what I mean by attack paper. Any paper that reports how to attack some system. Any paper that includes details of an exploit, discloses a vulnerability, or demonstrates a proof-of-concept for breaching the security of a system. The efail paper that Steven discussed recently is an example. Security conferences are full of these; the ratio of attack papers to total papers varies per conference. USENIX Security tends to contain a fair few.

Let’s be clear what I mean by case study. I mean a scientific report that details a specific occurrence of interest as observed by the author. Case studies can be active, and include interviews or other questioning. They can be solely passive observation. Case studies can follow just one case in isolation, or might follow a series of related cases in similar ways for comparison. Case studies usually do not involve a planned intervention by the observer, otherwise we start to call them experiments. But they may track changes as the result of interventions outside the observer’s control.

What might change if we think about attack papers as case studies? We can apply our scientific experience from other disciplines. I’ve argued before that security is a science. We need to adapt scientific techniques, and other sciences might learn from what we do in security. But we need to be in a dialogue there. Calling attack papers what they are opens up this dialogue in several ways.

Continue reading Attack papers are case studies