Battery Status readout as a privacy risk

Privacy risks and threats arise even in seemingly innocuous mechanisms. It is a fairly regular issue.

Over a year ago, I was researching the risk of the W3C Battery Status API. The mechanism allows a web site to read the battery level of a device (smartphone, laptop, etc.). One of the positive use cases may be, for example, stopping the execution of intensive operations if the battery is running low.

Our privacy analysis of Battery Status API revealed interesting results.

Privacy analysis of Battery API

The battery status provides the following information:

  • the current level of battery (format: 0.0–1.0, for empty and full battery, respectively)
  • time to a full discharge of battery (in seconds)
  • time to a full charge of battery, if connected to a charger (in seconds)

These items are updated whenever a new value is supplied by the operating system

It turns out that privacy risks may surface even in this kind of – seemingly innocuous – data and access mechanisms.

Frequency of changes

The frequency of changes in the reported readouts from Battery Status API potentially allow the monitoring of users’ computer use habits; for example, potentially enabling analyzing of how frequently the user’s device is under heavy use. This could lead to behavioral analysis.

Additionally, identical installations of computer deployments in standard environments (e.g. at schools, work offices, etc.) are often are behind a NAT. In simple terms, NAT allows a number of users to browse the Internet with an – externally seen – single IP address. The ability of observing any differences between otherwise identical computer installations – potentially allows particular users to be identified (and targeted?).

Battery readouts as identifiers

The information provided by the Battery Status API is not always subject to rapid changes. In other words, this information may be static for a period of time; this in turn may give rise to a short-lived identifier. The situation gets especially interesting when we consider a scenario of users sometimes clearing standard web identifiers (such as cookies). In such a case, a web script could potentially analyse identifiers provided by Battery Status API, and this information then could possibly even lead to re-creation of other identifiers. A simple sketch follows.

Continue reading Battery Status readout as a privacy risk

Do you know what you’re paying for? How contactless cards are still vulnerable to relay attack

Contactless card payments are fast and convenient, but convenience comes at a price: they are vulnerable to fraud. Some of these vulnerabilities are unique to contactless payment cards, and others are shared with the Chip and PIN cards – those that must be plugged into a card reader – upon which they’re based. Both are vulnerable to what’s called a relay attack. The risk for contactless cards, however, is far higher because no PIN number is required to complete the transaction. Consequently, the card payments industry has been working on ways to solve this problem.

The relay attack is also known as the “chess grandmaster attack”, by analogy to the ruse in which someone who doesn’t know how to play chess can beat an expert: the player simultaneously challenges two grandmasters to an online game of chess, and uses the moves chosen by the first grandmaster in the game against the second grandmaster, and vice versa. By relaying the opponents’ moves between the games, the player appears to be a formidable opponent to both grandmasters, and will win (or at least force a draw) in one match.

Similarly, in a relay attack the fraudster’s fake card doesn’t know how to respond properly to the payment terminal because, unlike a genuine card, it doesn’t contain the cryptographic key known only to the card and the bank that verifies the card is genuine. But like the fake chess grandmaster, the fraudster can relay the communication of the genuine card in place of the fake card.

For example, the victim’s card (Alice, in the diagram below) would be in a fake or hacked card payment terminal (Bob) and the criminal would use the fake card (Carol) to attempt a purchase in a genuine terminal (Dave). The bank would challenge the fake card to prove its identity, this challenge is then relayed to the genuine card in the hacked terminal, and the genuine card’s response is relayed back on behalf of the fake card to the bank for verification. The end result is that the terminal used for the real purchase sees the fake card as genuine, and the victim later finds an unexpected and expensive purchase on their statement.

A rigged payment terminal capable of performing the relay attack can be made from off-the-shelf components
The relay attack, where the cards and terminals can be at any distance from each other

Demonstrating the grandmaster attack

I first demonstrated that this vulnerability was real with my colleague Saar Drimer at Cambridge, showing on television how the attack could work in Britain in 2007 and in the Netherlands in 2009.

In our scenario, the victim put their card in a fake terminal thinking they were buying a coffee when in fact their card details were relayed by a radio link to another shop, where the criminal used a fake card to buy something far more expensive. The fake terminal showed the victim only the price of a cup of coffee, but when the bank statement arrives later the victim has an unpleasant surprise.

At the time, the banking industry agreed that the vulnerability was real, but argued that as it was difficult to carry out in practice it was not a serious risk. It’s true that, to avoid suspicion, the fraudulent purchase must take place within a few tens of seconds of the victim putting their card into the fake terminal. But this restriction only applies to the Chip and PIN contact cards available at the time. The same vulnerability applies to today’s contactless cards, only now the fraudster need only be physically near the victim at the time – contactless cards can communicate at a distance, even while the card is in the victim’s pocket or bag.

Continue reading Do you know what you’re paying for? How contactless cards are still vulnerable to relay attack

Analyzing privacy aspects of the W3C Vibration API

When making web standards, multiple scenarios possibly affecting privacy are considered. This includes even extreme ones; and this is a good thing. It’s best to predict the creative use and abuse of web features, before they are exploited.

Vibration API

The mechanism allowing websites to utilize a device’s vibration motor is called the Vibration API. The mechanism allows a device to be vibrated in particular patterns. The argument to the vibration() function is a list called a pattern. The list’s odd indices cause a vibration for a specific length of time, and even values are the still periods. For example, a web designer can make the device to vibrate for a specific duration, say 50 ms and follow that with a still period of 100 ms using the following call:

navigator.vibration([50,100])

In certain circumstances this can create several interesting potential privacy risks. Let’s look at the Vibration API from a privacy point of view. I will consider a number of scenarios on various technical levels.

Toy de-anonymisation scenario

One potential risk is the identification of a particular person in real life. Imagine several people in the same room placing their devices on a table. At some point, one person’s device vibrates in specific patterns. This individual might then become marked to a potential observer.

How could such a script be delivered? One possibility is though web advertising infrastructures. These offer capabilities of targeting individuals with a considerable accuracy (with respect to their location).

Continue reading Analyzing privacy aspects of the W3C Vibration API

Biometrics for payments

HSBC and First Direct recently announced that they are introducing fingerprint and voice recognition authentication for customers of online and telephone banking. In my own research, I first found nearly 20 years ago that people who have a multitude of passwords and PINs cannot manage them as security experts want them to. As the number of digital devices and services we use has increased rapidly, managing dozens of login details has become a headache for most people. We recently reported that most bank customers juggle multiple PINs, and are unable to follow the rules that banks set in their contracts. Our research also found that many people dislike the 2-factor token solutions that are currently used by many UK banks.

Passwords as most people use them today are not particularly secure. Attackers can easily attempt to collect information on individuals, using leaks of password files not properly protected by some websites, “phishing” scams or malware planted on people’s computers. Reusing a banking password on other websites – something that many of us do because we cannot remember dozens of different passwords – is also a significant security risk.

The introduction of fingerprint recognition on smartphones – such as the iPhone – has delighted many users fed up with entering their PINs dozens of times a day. So the announcement that HSBC and other banks will be able to use the fingerprint sensor on their smartphones for banking means that millions of consumers will finally be able to end their battle with passwords and PINs and use biometrics instead. Other services people access from their smartphones are likely to follow suit. And given the negative impact that cumbersome authentication via passwords and PINs has on staff productivity and morale in many organisations, we can expect to see biometrics deployed in work contexts, too.

But while biometrics – unlike passwords – do not require mental gymnastics from users, there are different usability challenges. Leveraging the biometric from the modality of interaction – e.g. voice recognition phone-based interactions – makes authentication an easy task, but it will work considerably better in quiet environments than noisy ones – such as a train stations or with many people talking in the background. As many smartphone users have learnt, fingerprint sensors have a hard time recognising cold and wet fingers. And – as we report in a paper presented at IEEE Identity, Security and Behavior Analysis last week – privacy concerns mean some users ‘don’t like putting their face on the Internet’. Biometrics can’t come soon enough for most users, but there is still a lot of design and testing work to be done to make biometrics work for different interaction, physical and social contexts.

Insecure by design: protocols for encrypted phone calls

The MIKEY-SAKKE protocol is being promoted by the UK government as a better way to secure phone calls. The reality is that MIKEY-SAKKE is designed to offer minimal security while allowing undetectable mass surveillance, through the introduction a backdoor based around mandatory key-escrow. This weakness has implications which go further than just the security of phone calls.

The current state of security for phone calls leaves a lot to be desired. Land-line calls are almost entirely unencrypted, and cellphone calls are also unencrypted except for the radio link between the handset and the phone network. While the latest cryptography standards for cellphones (3G and 4G) are reasonably strong it is possible to force a phone to fall back to older standards with easy-to-break cryptography, if any. The vast majority of phones will not reveal to their user whether such an attack is under way.

The only reason that eavesdropping on land-line calls is not commonplace is that getting access to the closed phone networks is not as easy compared to the more open Internet, and cellphone cryptography designers relied on the equipment necessary to intercept the radio link being only affordable by well-funded government intelligence agencies, and not by criminals or for corporate espionage. That might have been true in the past but it certainly no longer the case with the necessary equipment now available for $1,500. Governments, companies and individuals are increasingly looking for better security.

A second driver for better phone call encryption is the convergence of Internet and phone networks. The LTE (Long-Term Evolution) 4G cellphone standard – under development by the 3rd Generation Partnership Project (3GPP) – carries voice calls over IP packets, and desktop phones in companies are increasingly carrying voice over IP (VoIP) too. Because voice calls may travel over the Internet, whatever security was offered by the closed phone networks is gone and so other security mechanisms are needed.

Like Internet data encryption, voice encryption can broadly be categorised as either link encryption, where each intermediary may encrypt data before passing it onto the next, or end-to-end encryption, where communications are encrypted such that only the legitimate end-points can have access to the unencrypted communication. End-to-end encryption is preferable for security because it avoids intermediaries being able to eavesdrop on communications and gives the end-points assurance that communications will indeed be encrypted all the way to their other communication partner.

Current cellphone encryption standards are link encryption: the phone encrypts calls between it and the phone network using cryptographic keys stored on the Subscriber Identity Module (SIM). Within the phone network, encryption may also be present but the network provider still has access to unencrypted data, so even ignoring the vulnerability to fall-back attacks on the radio link, the network providers and their suppliers are weak points that are tempting for attackers to compromise. Recent examples of such attacks include the compromise of the phone networks of Vodafone in Greece (2004) and Belgacom in Belgium (2012), and the SIM card supplier Gemalto in France (2010). The identity of the Vodafone Greece hacker remains unknown (though the NSA is suspected) but the attacks against Belgacom and Gemalto were carried out by the UK signals intelligence agency – GCHQ – and only publicly revealed from the Snowden leaks, so it is quite possible there are others attacks which remain hidden.

Email is typically only secured by link encryption, if at all, with HTTPS encrypting access to most webmail and Transport Layer Security (TLS) sometimes encrypting other communication protocols that carry email (SMTP, IMAP and POP). Again, the fact that intermediaries have access to plaintext creates a vulnerability, as demonstrated by the 2009 hack of Google’s Gmail likely originating from China. End-to-end email encryption is possible using the OpenPGP or S/MIME protocols but their use is not common, primarily due to their poor usability, which in turn is at least partially a result of having to stay compatible with older insecure email standards.

In contrast, instant messaging applications had more opportunity to start with a clean-slate (because there is no expectation of compatibility among different networks) and so this is where much innovation in terms of end-to-end security has taken place. Secure voice communication however has had less attention than instant messaging so in the remainder of the article we shall examine what should be expected of a secure voice communication system, and in particular see how one of the latest and up-coming protocols, MIKEY-SAKKE, which comes with UK government backing, meets these criteria.

MIKEY-SAKKE and Secure Chorus

MIKEY-SAKKE is the security protocol behind the Secure Chorus voice (and also video) encryption standard, commissioned and designed by GCHQ through their information security arm, CESG. GCHQ have announced that they will only certify voice encryption products through their Commercial Product Assurance (CPA) security evaluation scheme if the product implements MIKEY-SAKKE and Secure Chorus. As a result, MIKEY-SAKKE has a monopoly over the vast majority of classified UK government voice communication and so companies developing secure voice communication systems must implement it in order to gain access to this market. GCHQ can also set requirements of what products are used in the public sector and as well as for companies operating critical national infrastructure.

UK government standards are also influential in guiding purchase decisions outside of government and we are already seeing MIKEY-SAKKE marketed commercially as “government-grade security” and capitalising on their approval for use in the UK government. For this reason, and also because GCHQ have provided implementers a free open source library to make it easier and cheaper to deploy Secure Chorus, we can expect wide use MIKEY-SAKKE in industry and possibly among the public. It is therefore important to consider whether MIKEY-SAKKE is appropriate for wide-scale use. For the reasons outlined in the remainder of this article, the answer is no – MIKEY-SAKKE is designed to offer minimal security while allowing undetectable mass surveillance though key-escrow, not to provide effective security.

Continue reading Insecure by design: protocols for encrypted phone calls

Experimenting with SSL Vulnerabilities in Android Apps

As the number of always-on, always-connected smartphones increase, so does the amount of personal and sensitive information they collect and transmit. Thus, it is crucial to secure traffic exchanged by these devices, especially considering that mobile users might connect to open Wi-Fi networks or even fake cell towers. The go-to protocol to secure network connection is HTTPS i.e., HTTP over SSL/TLS.

In the Android ecosystem, applications (apps for short), support HTTPS on sockets by relying on the android.net, android.webkit, java.net, javax.net, java.security, javax.security.cert, and org.apache.http packages of the Android SDK. These packages are used to create HTTP/HTTPS connections, administer and verify certificates and keys, and instantiate TrustManager and HostnameVerifier interfaces, which are in turn used in the SSL certificate validation logic.

A TrustManager manages the certificates of all Certificate Authorities (CAs) used to assess a certificate’s validity. Only root CAs trusted by Android are contained in the default TrustManager. A HostnameVerifier performs hostname verification whenever a URL’s hostname does not match the hostname in the peer’s identification credentials.

While browsers provide users with visual feedback that their communication is secured (via the lock symbol) as well as certificate validation issues, non-browser apps do so less extensively and effectively. This shortcoming motivates the need to scrutinize the security of network connections used by apps to transmit user sensitive data. We found that some of the most popular Android apps insufficiently secure these connections, putting users’ passwords, credit card details and chat messages at risk.

Continue reading Experimenting with SSL Vulnerabilities in Android Apps