UCL’s Centre for Doctoral Training in Cybersecurity

It has become increasingly apparent that the world’s cybersecurity challenges will not be resolved by specialists working in isolation.

Indeed, it has become clear that the challenges that arise from the integration of emerging technologies into existing social, commercial, legal and political systems will not be resolved by specialists working in isolation. Rather, these complex problems require the efforts of people who can cross disciplinary boundaries, communicate beyond their own fields, and comprehend the context in which others operate. Computer science, information security, encryption, criminology, psychology, international relations, public policy, philosophy of science, legal studies, and economics combine to form the ecosystem within which cybersecurity problems and solutions are found but training people to think and work across these boundaries has proven difficult.

UCL is delighted to have been awarded funding by the UK’s Engineering and Physical Sciences Research Council (EPSRC) to establish a Centre for Doctoral Training (CDT) in Cybersecurity that will help to establish a cadre of leaders in security with the breadth of perspective and depth of skills required to handle the complex challenges in security faced by our society. The CDT is led by Prof Madeline Carr (Co-Director; UCL Science, Technology, and Public Policy), Prof Shane Johnson (Co-Director; UCL Security and Crime Science), and Prof David Pym (Director; UCL Programming Principles, Logic, and Verification (PPLV) and Information Security).

The CDT is an exciting collaboration that brings together research teams in three of UCL’s departments – Computer Science, Security and Crime Science, and Science, Technology, Engineering, and Public Policy – in order to increase the capacity of the UK to respond to future information and cybersecurity challenges. Through an interdisciplinary approach, the CDT will train cohorts of highly skilled experts drawn from across the spectrum of the engineering and social sciences, able to become the next generation of UK leaders in industry and government, public policy, and scientific research. The CDT will equip them with a broad understanding of all sub-fields of cybersecurity, as well as specialized knowledge and transferable skills to be able to operate professionally in business, academic, and policy circles.

The CDT will admit candidates with a strong background in STEM (CS, Mathematics, Engineering, Physics) or Social Sciences (Psychology, Sociology, International Relations, Public Policy, Crime Science, Economics, and Management), either recent graduates or mid-career. Each will be trained in research and innovation skills in the multidisciplinary facets of cybersecurity, (computing, crime science, management and public policy) and then specialise within a discipline, with industrial experience through joint industrial projects and internships.

For more information, including directions for applications, please visit the cybersecurity CDT website.

Scanning beyond the horizon: long-term planning for cybersecurity and the post-quantum challenge

I recently came across an interesting white paper published by PwC, “A false sense of security? Cyber-security in the Middle East”. This paper is interesting for a number of reasons. Most obviously, I guess, it’s about an area of the world that’s a bit different from that of my immediate experience in the West and which faces many well-reported challenges. Indeed, it seems, as reported in the PwC paper, that companies and governments in the region suffer from more cyberattacks, resulting in bigger financial losses, than anywhere else in the world.

The paper confirms that many of the problems faced by companies and governments in the Middle East are, as of course one would expect, exactly those faced by their Western counterparts – too often, the cybersecurity industry responds to incidents in a fire-fighting style, rolling out patches in rushed knee-jerk reactions to imminent threats.

The way to counteract these problems is, of course, to train cybersecurity professionals who will be capable of making appropriate strategic and tactical investments in security and able to respond to respond better to attacks. All well and good, but there is global skills deficit in the cybersecurity industry and it seems that this problem is particularly acute in the Middle East;  and it seems to be a notable contributory factor to the problems experienced in the region. The problem needs some long-term thinking: in the average user, we need to encourage good security behaviours, which are learned over many years; in the security profession, we need to ensure that there is sufficient upcoming talent to fill our growing needs over the next century.

Exploring this topic a bit, I came across a company called SiConsult, a security services provider (with which I have no personal connection), with offices in the Middle East. They are taking an initiative, which provides students (or, indeed, anyone I think) with an interesting opportunity. They have been thinking about cryptography in the post-quantum world, and how to develop solutions and relevant expertise in the long term.

All public key cryptography as we currently know it may be rendered insecure by the deployment of quantum computers. Your Internet connection to the bank, the keys protecting your Dropbox, and your secure messaging applications will all be compromised. But a quantum computer that can run Shor’s algorithm, which means large numbers can be factorized in polynomial time, is still maybe ten years away (or five, or twenty, or … ). So why should we care now? Well, the consequences of losing the protection of good public-key crypto would be very serious and, consequently, NIST (the US’s National Institute of Standards and Technology) is running a process to standardize quantum-resistant algorithms. The first round of submissions has just closed, but we will have to wait until 2025 for draft standards, which could be too late for some use cases.

As a result of the process timeline, companies and academics are likely to search for their own solutions long before NIST standardizes theirs. SiConsult, the company I mentioned, is inviting students (or anyone else) develop a quantum-safe application messaging application, for a small prize – the Post Quantum Innovation Challenge. What is interesting is that the company’s motivation here is not purely financial – they are not looking to retain ownership of any designs or applications that may be submitted to the competition – but instead they are looking to spark interest in post-quantum cryptography, search for new cybersecurity talent, and encourage cybersecurity education, especially in the Middle East.

Initiatives like the Post Quantum Innovation Challenge are needed to energise those that may be considering a career in cyber security, to make sure that the talent pipeline is flowing well for years to come. Importantly, the barrier for entry to PQIC is relatively low: anyone with an interest in security should consider entering. Perhaps it will go a little of the way towards a solution to both the quantum and education long-term problems.

Category errors in (information) security: how logic can help

(Information) security can, pretty strongly arguably, be defined as being the process by which it is ensured that just the right agents have just the right access to just the right (information) resources at just the right time. Of course, one can refine this rather pithy definition somewhat, and apply tailored versions of it to one’s favourite applications and scenarios.

A convenient taxonomy for information security is determined by the concepts of confidentiality, integrity, and availability, or CIA; informally:

Confidentiality
the property that just the right agents have access to specified information or systems;
Integrity
the property that specified information or systems are as they should be;
Availability
the property that specified information or systems can be accessed or used when required.

Alternatives to confidentiality, integrity, and availability are sensitivity and criticality, in which sensitivity amounts to confidentiality together with some aspects of integrity and criticality amounts to availability together with some aspects of integrity.

But the key point about these categories of phenomena is that they are declarative; that is, they provide a statement of what is required. For example, that all documents marked ‘company private’ be accessible only to the company’s employees (confidentiality), or that all passengers on the aircraft be free of weapons (integrity), or that the company’s servers be up and running 99.99% of the time (availability).

It’s all very well stating, declaratively, one’s security objectives, but how are they to be achieved? Declarative concepts should not be confused with operational concepts; that is, ones that describe how something is done. For example, passwords and encryption are used to ensure that documents remain confidential, or security searches ensure that passengers do not carry weapons onto an aircraft, or RAID servers are employed to ensure adequate system availability. So, along with each declarative aim there is a collection of operational tools that can be used to achieve it.

Continue reading Category errors in (information) security: how logic can help

Mathematical Modelling in the Two Cultures

Models, mostly based on mathematics of one kind or another, are used everywhere to help organizations make decisions about their design, policies, investment, and operations. They are indispensable.

But if modelling is such a great idea, and such a great help, why do so many things go wrong? Well, there’s good modelling and less good modelling. And it’s hard for the consumers of models — in companies, the Civil Service, government agencies — to know when they’re getting the good stuff. Worse, there’s a lot of comment and advice out there which at best doesn’t help, and perhaps makes things worse.

In 1959, the celebrated scientist and novelist C. P. Snow delivered the Rede Lecture on ‘The Two Cultures’. Snow later published a book developing the ideas as ‘The Two Cultures and the Scientific Revolution’.

A famous passage from Snow’s lecture is the following (it can be found in Wikipedia):

‘A good many times I have been present at gatherings of people who, by the standards of the traditional culture, are thought highly educated and who have with considerable gusto been expressing their incredulity at the illiteracy of scientists. Once or twice I have been provoked and have asked the company how many of them could describe the Second Law of Thermodynamics. The response was cold: it was also negative. Yet I was asking something which is the scientific equivalent of: Have you read a work of Shakespeare’s?

‘I now believe that if I had asked an even simpler question — such as, What do you mean by mass, or acceleration, which is the scientific equivalent of saying, Can you read? — not more than one in ten of the highly educated would have felt that I was speaking the same language. So the great edifice of modern physics goes up, and the majority of the cleverest people in the western world have about as much insight into it as their neolithic ancestors would have had.’

Over the decades since, society has come to depend upon mathematics, and on mathematical models in particular, to a very great extent. Alas, the mathematical sophistication of the great majority of consumers of models has not really improved. Perhaps it has even deteriorated.

So, as mathematicians and modellers, we need to make things work. The starting point for good modelling is communication with the client.

Continue reading Mathematical Modelling in the Two Cultures