Privacy Enhancing Technologies (GA17) Modern privacy-friendly computing

Dr George Danezis
(g.danezis@ucl.ac.uk)

The "easy" privacy problem: Hiding information from third parties

- Alice and Bob trust each other with their "private" information.
- They wish to hide their interactions from third parties:
- Encryption hides content.
- Anonymous communications hide meta-data.
- A relatively well-understood problem.
- Widely deployed (TLS, Tor).

The "hard" privacy problem: Hiding information from your partners

Who is richer?

I am also curious but I do not want to tell you how much I earn.

- Example: "The Millionaire's problem" (Yao)
- Alice and Bob do not trust each other with their secrets, but still want to jointly compute on them.
- Associated problem: they may not trust each other to perform any computations correctly.

The formal problem

- Consider a function \mathbf{f} with \mathbf{n} inputs \mathbf{x}_{i} from distinct parties returning a result: $\mathbf{y}=\mathbf{f}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right)$
- Correctness: We want to compute \mathbf{y}
- Privacy: do not learn anything more about \mathbf{x}_{i} than what we would learn by learning \mathbf{y}. Despite the observations o from the protocol
- In terms of probability:
$-\operatorname{Pr}\left[\mathbf{x}_{\mathrm{i}} \mid \mathbf{0}, \mathbf{y}, \mathbf{x}_{\mathbf{j}}\right]=\operatorname{Pr}\left[\mathbf{x}_{\mathrm{i}} \mid \mathbf{y}, \mathbf{x}_{\mathbf{j}}\right]$

Straw-man Solution: Trusted Third Party

TTP: Every participant has to trust TTP for confidentiality, integrity and availability.

What is wrong with Trusted Third Parties

- May not exist!
- Even if it may exist: The 4 Cs
- Cost: what is the business model? How to implement cheaply?
- Corruption: How do you really know that it will not side with the adversary?
- Compulsion: Legal or extra-legal compulsion to reveal secrets.
- Compromise: It may get hacked!
- Conclusion:
- TTP: not a robust implementation strategy.
- However: a great specification strategy (ideal functionality).

Theory:
 "Any function can be computed privately without a TTP"

- Even without a coordinator.
- Participants do not learn other's secrets.
- Can be made robust to cheating.
- Two adversary models:
- Honest but curious: adversary executes protocols correctly but tries to learn as much as possible. ($1 / 2 \mathrm{~N}+1$ honest)
- Byzantine: will send, or drop arbitrary messages to learn the secrets. (2/3 N +1 honest)
- Both can be tolerated, but with different efficiency.

How does one prove this generic result?

- Computation theory:
- NAND is sufficient to represent any boolean circuit.

A	B	Q
A	B	Q
0	0	1
0	1	1
1	0	1
1	1	0

- NAND can be expressed using the algebraic expression:

$$
\operatorname{NAND}(\mathrm{A}, \mathrm{~B})=1-\mathrm{AB}
$$

- If we can express binary digits, compute addition and multiplication privately, we can compute all circuits.

Two approaches

- Homomorphic encryption:
- Express 0,1 as randomized ciphertexts E(0), E(1).
- Allow for operations on ciphertexts producing the cipher text of an addition and multiplication.
- Here in depth: additive homomorphism only.
- Secret sharing:
- Express 0,1 as "shares" distributed between users.
- Do addition and multiplication using protocols on shares.
- Here in depth: SPDZ addition and multiplication.

Homomorphic Encryption

Homomorphic encryption The Big Picture

Additively homomorphic public-key encryption

- Goal - define functions for:
- GenKey
- Encrypt
- Decrypt
- Add
- (no multiply)
- Note:
- Add n times is multiplication with a public constant

Mathematical reminder

- Define two elements g , h that are generators of a cyclic group within which the discrete logarithm problem is believed to be hard.
- Generators means: gi may lead to all group elements.
- Discrete logarithm problem:
- Given $\mathrm{g}, \mathrm{x} \rightarrow \mathrm{gx}$ is easy to compute.
- Given $\mathrm{g}, \mathrm{g}^{\mathrm{x}} \rightarrow \mathrm{x}$ is hard to compute.
- Security assumption.
- Example such groups:
- Integers modulo a prime. (>1024 bits) (Multiplicative notation! g×)
- Points on Elliptic curves. (>160 bits) (Additive notation! xg)

The Benaloh Crypto-system

- First introduced in the context of e-voting, to count votes.
- The Scheme:
- Public: g, h (and group parameters)
- Key generation: generate a random "x" ($0<x<$ order of the group); Private key is " x ", public key is $p k=g^{\mathrm{x}}$.
- Encryption of m with pk: random k ;
$E(m ; k)=\left(g^{k}, g^{\times k} h^{m}\right)$
- Decryption of (a, b) with $x: m=\log _{h}\left(b(a \times)^{-1}\right)\left(=\log _{h} g^{\times k} h^{m} / g^{\times k}\right)$
- But is $\log _{\mathrm{h}}$ not hard to compute?
- Make a table for all small (16-32 bit) values.

The additive homomorphism

- Reminder:
- Encryption: E(m; k) = ($\left.\mathrm{g}^{\mathrm{k}}, \mathrm{g}^{\times k} \mathrm{~h}^{\mathrm{m}}\right)$
- Homomorphism
- Addition of $E\left(m_{0} ; k_{0}\right)=\left(a_{0}, b_{0}\right)$ and $E\left(m_{1} ; k_{1}\right)=\left(a_{1}, b_{1}\right)$

$$
\begin{aligned}
E\left(m_{0}+m_{1}\right. & \left.; k_{0}+k_{1}\right)=\left(a_{0} a_{1}, b_{0} b_{1}\right) \\
& =\left(g^{k 0} g^{k 1}, g^{\times k 0} h^{m 0} g^{\times k} h^{m 1}\right)=\left(g^{k 0+k 1}, g^{\times(k 0+k 11)} h^{(m 0+m 1)}\right.
\end{aligned}
$$

- Multiplication of $E\left(m_{0} ; k_{0}\right)=\left(a_{0}, b_{0}\right)$ with a constant c :

$$
\mathrm{E}\left(\mathrm{~cm}_{0} ; \mathrm{ck}_{0}\right)=\left(\left(\mathrm{a}_{0}\right)^{c},\left(\mathrm{~b}_{0}\right)^{c}\right)
$$

- Not sufficient for all operations. (No multiplication of secrets)

Application 1: Simple Statistics

- Problem: A poll asks a number of participants whether they prefer "red" or "blue". How many said "red" and how many "blue"?
- Solution: Each participant submits a Benaloh ciphertext for both "red" and "blue" to an authority. The authority can homomorphically add them.
- Lab 03 will be all about this!

IUCI

Illustrated

Authority

Discussion

- Domain of plaintext is small (up to number of participants), so decryption by enumeration is cheap.
- The Key questions:
- Who's public key?
- Who has the decryption key?
- The Decryption question: Who decrypts?
- If single entity \rightarrow TTP!
- If no-one: scheme is useless! (Outsourced computation?)

Threshold Decryption

- Answer: it is better if no one has the secret key.
- No TTP!
- Threshold decryption:
- The secret key is distributed across many different people.
- Each have to contribute to the decryption.
- Even if one is missing, remaining cannot decrypt.
- How?
- Private keys: x_{1}, \ldots, x_{n}
- Public key: $\mathrm{g}^{\times 1+\ldots+\mathrm{xn}}$
- Decryption of (a,b): m=b/ax1 $a^{\times 2} / \ldots / a^{\times n}$

Beyond the Benaloh limitations

- Raw RSA:
- Multiplicative homomorphism
- No addition :-(
- Paillier Encryption:
- Additive homomorphism only
- Based on RSA: large ciphertexts, slow
- Schemes based on Pairings on Elliptic curves:
- Addition and 1 multiplication!
...
- Breakthrough: Gentry (2009) A fully homomorphic scheme
- Extremely inefficient! But cool.
- Somewhat Homomorphic Schemes:
- Vinod Vaikuntanathan et al.
- Larger ciphertexts (30Kb), but fast operations (Add 1ms, Mult 50ms)
- Variable but limited circuit depth.

What is cool about homomorphic schemes?

- Simple architecture:
- Everyone just provides encrypted inputs. One party (any) computes the function.
- Secret functions:
- Parts of the function itself may remain secret. The service can perform whatever operations without telling any party.
- Powerful and efficient:
- Any function of shallow depth.
- Linear operations are very fast. (Order one field multiplications)
- Multiplications can be fast-ish (for SHE)

The downsides of homomorphisms

- Expressiveness:
- Expressing computations as boolean circuits makes them much more expensive (example: no binary search!)
- Efficiency:
- Every bit \rightarrow 160bit, 1024bits, ..., 30Kbs.
- The problem of decryption (Part 2): Integrity

Attack: What is the party doing the computation is actively malicious?

Lesson: No confidentiality without integrity!

No confidentiality without integrity!

- What to do?
- The central party needs to prove that the output of the computation was indeed correct.
- Easy case: computation is public, anyone can verify it
- Ouch. Expensive.
- Techniques to verify correctness of outsourced computations.
- Hard case: computation is private.
- No one has really dealt with this case.
- Maybe: if private information can be turned into data? ...

Secret sharing

Secret Sharing based private computations

- The core idea:
- Each secret is "shared" across many authorities.
- Those authorities use protocols to transform shares of secrets into shares of function of secrets.
- Key: addition \& multiplication
- SPDZ variant:
- Pre-computations to speed up multiplication (using SHE)
- Integrity protection, nearly for free!

Architecture

Query (f)

1 Authority 3

The basic scheme

- We work in the field of integers modulo a prime p
- Clock arithmetic with "p hour" clock.
- A share of secret " x " is denoted " $<x>$ "
- If we add all shares " $<x>$ " $(\bmod p)$ we get " x "
- Toy example:
- Prime $p=2, x=1$
- Shares $\langle x\rangle$ are $\{1,1,0,1,0\}$
- Check: $1+1+0+1+0 \bmod 2=1$

Addition of secrets is simple!

- Sharing is based on addition:
- Natural additive homomorphism.
- Add <a> and :
- Each authority can simply add the shares
- <c> = <a+b> = <a> + mod p
- No distributed protocol is necessary.

Public constant addition and multiplication

- Add <a> to a constant k:
- Split kinto <k> as $\{0,0, \ldots, 0, k\}$
- Do addition between <k> and <a>
- Multiply <a> by a public constant k :
- Each authority privately computes (no interaction)
- <c> = <ka> = k<a>

Multiplication of secrets

- More complex:
- Need some pre-computed values.
- Interactive protocol between authorities.
- Pre-computed values:
- Independent from the function " f ".
- Can be batch produced beforehand.
- How? Using TTP, Secure Hardware, SHE (SPDZ).

Multiplication

- Precomputed triples: <a>, , <c>
- Such that <c> = <ab>
- Protocol to multiply <x> and <y>:
- Get fresh pre-computed triplet <a>,,<c>
- Compute

Note: a, b are randomly distributed

$$
\begin{aligned}
& \langle e\rangle=\langle x\rangle+\langle a\rangle \\
& \langle d\rangle=\langle y\rangle+\langle b\rangle
\end{aligned}
$$ so they totally hide x and y

- Publish <e> and <d> to get e and d.
- Compute:
<z> = <xy> = <c>-e-d<a> + ed

Logic gates

- Share secret input bits <0> or <1>
- Define function f as a circuit
- Boolean gates:
$-\operatorname{NOT}(a)=1-a$
- AND $(a, b)=a b$
- NAND(a, b) = $1-a b$
$-\operatorname{NOR}(a, b)=(1-a)(1-b)$
$-\operatorname{XOR}(a, b)=(a-b)^{2}$

The problem with circuits

- Doing an addition of a 32 bit number:
- Multiplicative depth of about 14.
- Requires many rounds of interaction.
- It is much faster to do linear operations on shares of the actual secrets rather than bits.
- Solution:
- Protocol to convert shares of bits to full representations. eg. <1>, <1> to <3>
- Protocol to convert a secret share to its bit representation eg. <3> to <1>, <1>

Secret Sharing: pros and cons

- Pros:
- Well understood complete protocols.
- Actual operations are very cheap.
- Integrity can be very cheap.
- Cons:
- Network interactions.
- Vast number of triplets (one per gate).
- Complications about generating them.
- Circuits express inefficiently.
- Computations cannot be secret!

Overall conclusions

- Private computations:
- You can do any computation privately.
- It will cost you.
- Compute:homomorphic encryption.
- Network: secret sharing.
- Linear operations are cheap.
- Non-linear operations less so.
- Limited non-linear depth helps a lot with efficiency.
- Integrity:
- A problem for confidentiality.
- Maturity:
- Tool chains and compilers: research grade.
- Too slow to use for bulk computations.
- Special high-value computations OK - i.e. billing.
- Use it to implement functions of the TCB securely.

