

Privacy Enhancing Technologies (GA17) Modern privacy-friendly computing

Dr George Danezis (g.danezis@ucl.ac.uk)

The "easy" privacy problem: Hiding information from third parties

- Alice and Bob trust each other with their "private" information.
- They wish to hide their interactions from third parties:
 - Encryption hides content.
 - Anonymous communications hide meta-data.
- A relatively well-understood problem.
 - Widely deployed (TLS, Tor).

The "hard" privacy problem: Hiding information from your partners

- Example: "The Millionaire's problem" (Yao)
- Alice and Bob do not trust each other with their secrets, but still want to jointly compute on them.
- Associated problem: they may not trust each other to perform any computations correctly.

The formal problem

- Consider a function **f** with **n** inputs **x**_i from distinct parties returning a result: **y** = **f**(**x**₁, ..., **x**_n)
 - Correctness: We want to compute y
 - Privacy: do not learn anything more about x_i than what we would learn by learning y. Despite the observations o from the protocol
- In terms of probability:

$$-\Pr[\mathbf{x}_i \mid \mathbf{o}, \mathbf{y}, \mathbf{x}_j] = \Pr[\mathbf{x}_i \mid \mathbf{y}, \mathbf{x}_j]$$

Straw-man Solution: Trusted Third Party

TTP: Every participant has to trust TTP for confidentiality, integrity and availability.

What is wrong with Trusted Third Parties

- May not exist!
- Even if it may exist: The 4 Cs
 - **Cost**: what is the business model? How to implement cheaply?
 - **Corruption**: How do you really know that it will not side with the adversary?
 - **Compulsion**: Legal or extra-legal compulsion to reveal secrets.
 - **Compromise**: It may get hacked!
- Conclusion:
 - TTP: not a robust implementation strategy.
 - However: a great **specification strategy** (ideal functionality).

Theory: "Any function can be computed privately without a TTP"

- Even without a coordinator.
- Participants do not learn other's secrets.
 - Can be made robust to cheating.
- Two adversary models:
 - Honest but curious: adversary executes protocols correctly but tries to learn as much as possible. (½ N + 1 honest)
 - Byzantine: will send, or drop arbitrary messages to learn the secrets. (2/3 N +1 honest)
- Both can be tolerated, but with different efficiency.

How does one prove this generic result?

- Computation theory:
 - NAND is sufficient to represent any boolean circuit.
 - NAND can be expressed using the algebraic expression: NAND(A,B) = 1 - AB
 - If we can express binary <u>digits</u>, compute <u>addition</u> and <u>multiplication</u> privately, we can compute all circuits.

1

0

1

1

0

0

1

1

Two approaches

- Homomorphic encryption:
 - Express 0,1 as randomized ciphertexts E(0), E(1).
 - Allow for operations on ciphertexts producing the cipher text of an addition and multiplication.
 - Here in depth: additive homomorphism only.
- Secret sharing:
 - Express 0,1 as "shares" distributed between users.
 - Do addition and multiplication using protocols on shares.
 - Here in depth: SPDZ addition and multiplication.

Homomorphic Encryption

Homomorphic encryption The Big Picture

Additively homomorphic public-key encryption

- Goal define functions for:
 - GenKey
 - Encrypt
 - Decrypt
 - Add
 - (no multiply)
- Note:
 - Add n times is *multiplication with a public constant*

Mathematical reminder

- Define two elements g,h that are generators of a cyclic group within which the discrete logarithm problem is believed to be hard.
 - Generators means: gⁱ may lead to all group elements.
 - Discrete logarithm problem:
 - Given g, $x \rightarrow g^x$ is easy to compute.
 - Given g, $g^x \rightarrow x$ is hard to compute.
 - Security assumption.
- Example such groups:
 - Integers modulo a prime. (>1024 bits) (Multiplicative notation! g^x)
 - Points on Elliptic curves. (>160 bits) (Additive notation! xg)

The Benaloh Crypto-system

- First introduced in the context of e-voting, to count votes.
- The Scheme:
 - Public: g, h (and group parameters)
 - Key generation: generate a random "x" (0 < x < order of the group); Private key is "x", public key is pk = g^x.
 - Encryption of m with pk: random k;
 E(m; k) = (g^k, g^{xk}h^m)
 - Decryption of (a,b) with x: $m = \log_h(b (a^x)^{-1}) (= \log_h g^{xk} h^m / g^{xk})$
- But is log_h not hard to compute?
 - Make a table for all small (16-32 bit) values.

The additive homomorphism

- Reminder:
 - Encryption: $E(m; k) = (g^k, g^{xk}h^m)$
- Homomorphism
 - Addition of $E(m_0; k_0) = (a_0, b_0)$ and $E(m_1; k_1) = (a_1, b_1)$

 $E(m_0+m_1; k_0+k_1) = (a_0a_1, b_0b_1)$

= $(g^{k0}g^{k1}, g^{xk0}h^{m0}g^{xk1}h^{m1}) = (g^{k0+k1}, g^{x(k0+k1)}h^{(m0+m1)})$

- Multiplication of $E(m_0; k_0) = (a_0, b_0)$ with a constant c: $E(cm_0; ck_0) = ((a_0)^c, (b_0)^c)$
- Not sufficient for all operations. (No multiplication of secrets)

Application 1: Simple Statistics

- Problem: A poll asks a number of participants whether they prefer "red" or "blue". How many said "red" and how many "blue"?
- Solution: Each participant submits a Benaloh ciphertext for both "red" and "blue" to an authority. The authority can homomorphically add them.
- Lab 03 will be all about this!

Illustrated

	···· ··· Compute				
Alice	Bob		Zoe	Total	
E(0)	E(1)		E(1)	E(10)	
E(1)	E(0)		E(0)	E(5)	

Authority

Discussion

- Domain of plaintext is small (up to number of participants), so decryption by enumeration is cheap.
- The Key questions:
 - Who's public key?
 - Who has the decryption key?
- The Decryption question: Who decrypts?
 - If single entity \rightarrow TTP!
 - If no-one: scheme is useless! (Outsourced computation?)

Threshold Decryption

- Answer: it is better if no one has the secret key.
 - No TTP!
- Threshold decryption:
 - The secret key is distributed across many different people.
 - Each have to contribute to the decryption.
 - Even if one is missing, remaining cannot decrypt.
- How?
 - Private keys: x₁, ..., x_n
 - Public key: gx1+...+xn
 - Decryption of (a,b): m = b / a^{x1} / a^{x2} / ... / a^{xn}

Beyond the Benaloh limitations

- Raw RSA:
 - Multiplicative homomorphism
 - No addition :-(
- Paillier Encryption:
 - Additive homomorphism only
 - Based on RSA: large ciphertexts, slow
- Schemes based on Pairings on Elliptic curves:
 - Addition and 1 multiplication!
- Breakthrough: Gentry (2009) A fully homomorphic scheme

 Extremely inefficient! But cool.
- Somewhat Homomorphic Schemes:
 - Vinod Vaikuntanathan et al.
 - Larger ciphertexts (30Kb), but fast operations (Add 1ms, Mult 50ms)
 - Variable but limited circuit depth.

What is cool about homomorphic schemes?

- Simple architecture:
 - Everyone just provides encrypted inputs. One party (any) computes the function.
- Secret functions:
 - Parts of the function itself may remain secret. The service can perform whatever operations without telling any party.
- Powerful and efficient:
 - Any function of shallow depth.
 - Linear operations are very fast. (Order one field multiplications)
 - Multiplications can be fast-ish (for SHE)

The downsides of homomorphisms

- Expressiveness:
 - Expressing computations as boolean circuits makes them much more expensive (example: no binary search!)
- Efficiency:
 - Every bit \rightarrow 160bit, 1024bits, ..., 30Kbs.
- The problem of decryption (Part 2): Integrity

Attack: What is the party doing the computation is actively malicious?

(Trade name: a decryption oracle attack)

Lesson: No confidentiality without integrity!

No confidentiality without integrity!

- What to do?
 - The central party needs to prove that the output of the computation was indeed correct.
 - Easy case: computation is public, anyone can verify it
 - Ouch. Expensive.
 - Techniques to verify correctness of outsourced computations.
 - Hard case: computation is private.
 - No one has really dealt with this case.
 - Maybe: if private information can be turned into data? ...

Secret sharing

Secret Sharing based private computations

- The core idea:
 - Each secret is "shared" across many authorities.
 - Those authorities use protocols to transform shares of secrets into shares of function of secrets.
 - Key: addition & multiplication
- SPDZ variant:
 - Pre-computations to speed up multiplication (using SHE)
 - Integrity protection, nearly for free!

The basic scheme

- We work in the field of integers modulo a prime p
 Clock arithmetic with "p hour" clock.
- A share of secret "x" is denoted "<x>"
 - If we add all shares "<x>" (mod p) we get "x"
- Toy example:
 - Prime p = 2, x = 1
 - Shares <x> are {1, 1, 0, 1, 0}
 - Check: 1 + 1 + 0 + 1 + 0 mod 2 = 1

Addition of secrets is simple!

- Sharing is based on addition:
 Natural additive homomorphism.
- Add <a> and :
 - Each authority can simply add the shares
 - <c> = <a+b> = <a> + mod p
 - No distributed protocol is necessary.

Public constant addition and multiplication

- Add <a> to a constant k:
 - Split k into <k> as {0,0,...,0,k}
 - Do addition between <k> and <a>
- Multiply <a> by a public constant k:
 - Each authority privately computes (no interaction)
 - <c> = <ka> = k<a>

Multiplication of secrets

- More complex:
 - Need some pre-computed values.
 - Interactive protocol between authorities.
- Pre-computed values:
 - Independent from the function "f".
 - Can be batch produced beforehand.
 - How? Using TTP, Secure Hardware, SHE (SPDZ).

Multiplication

- Precomputed triples: <a>, , <c>
 - Such that <c> = <ab>
- Protocol to multiply <x> and <y>:
 - Get fresh pre-computed triplet <a>,,<c>
 - Compute
 - <e> = <x> + <9>
 - <d>= <y> +

Note: a, b are randomly distributed so they totally hide x and y

- Publish <e> and <d> to get e and d.
- Compute:

<z> = <xy> = <c> - e - d<a> + ed

Linear!

Logic gates

- Share secret input bits <0> or <1>
- Define function f as a circuit
- Boolean gates:
 - NOT(a) = 1 a
 - AND(a, b) = ab
 - NAND(a, b) = 1 ab
 - NOR(a, b) = (1 a) (1 b)
 - $XOR(a, b) = (a-b)^2$

The problem with circuits

- Doing an addition of a 32 bit number:
 - Multiplicative depth of about 14.
 - Requires many rounds of interaction.
- It is much faster to do linear operations on shares of the actual secrets rather than bits.
- Solution:
 - Protocol to convert shares of bits to full representations.
 eg. <1>, <1> to <3>
 - Protocol to convert a secret share to its bit representation
 eg. <3> to <1>, <1>

Secret Sharing: pros and cons

- Pros:
 - Well understood complete protocols.
 - Actual operations are very cheap.
 - Integrity can be very cheap.
- Cons:
 - Network interactions.
 - Vast number of triplets (one per gate).
 - Complications about generating them.
 - Circuits express inefficiently.
 - Computations cannot be secret!

Overall conclusions

- Private computations:
 - You can do any computation privately.
 - It will cost you.
 - Compute:homomorphic encryption.
 - Network: secret sharing.
 - Linear operations are cheap.
 - Non-linear operations less so.
 - Limited non-linear depth helps a lot with efficiency.

- Integrity:
 - A problem for confidentiality.
- Maturity:
 - Tool chains and compilers: research grade.
 - Too slow to use for bulk computations.
 - Special high-value computations
 OK i.e. billing.
 - Use it to implement functions of the TCB securely.